Уравнение параболоида в декартовых координатах

Уравнение параболоида в декартовых координатах

Глава 46. Поверхности второго порядка

Эллипсоидом называется поверхность, которая в некоторой системе декартовых прямоугольных координат определяется уравнением

(1).

Уравнение (1) называется каноническим уравнением эллипсоида. Величины a, b, c суть полуоси эллипсоида (рис. 1). Если все они различны, эллипсоид называется трехосным; в случае, когда какие-нибудь две из них одинаковы, эллипсоид называется вытянутым, при a=b>c — сжатым. В случае, когда a=b=c , эллипсоид представляет собой сферу.

Гиперболоидами называются поверхности, которые в некоторой системе декартовых прямоугольных координат определяются уравнениями

, (2)

. (3)

Гиперболоид, определяемый уравнением (2), называется однополостным (рис. 2); гиперболоид, определяемый уравнением (3), — двуполостным (рис. 3); уравнения (2) и (3) называются каноническими уравнениями соответствующих гиперболоидов. Величины a, b, c называются полуосями гиперболоида. В случае однополостного гиперболоида, заданного уравнением (2), только первые из них (а и b ) показаны на рис. 2. В случае двуполостного гиперболоида, заданного уравнением (3), одна из них (именно, с) показана на рис. 3. Гиперболоиды, определяемые уравнениями (2) и (3), при a=b являются поверхностями вращения.

Параболоидами называются поверхности, которые в некоторой системе декартовых прямоугольных координат определяются уравнениями

, (4)

, (5)

где p и q — положительные числа, называемые параметрами параболоида. Параболоид, определяемый уравнением (4), называется эллиптическим (рис. 4); параболоид, определяемый уравнением (5), — гиперболическим (рис. 5). Уравнения (4) и (5) называют каноническими уравнениями соответствующих параболоидов. В случае, когда p=q , параболоид, определяемый уравнением (4), является поверхностью вращения (вокруг Oz).

Рассмотрим теперь преобразование пространства, которое называется равномерным сжатием (или равномерным растяжением).

Выберем какую-нибудь плоскость; обозначим ее буквой . Зададим, кроме того, некоторое положительное число q . Пусть М — произвольная точка пространства, не лежащая на плоскости , — основание перпендикуляра, опущенного на плоскость из точки М. Переместим точку М по прямой в новое положение так, чтобы имело место равенство

и чтобы после перемещения точка осталась с той же стороны от плоскости , где она была первоначально (рис. 6). Точно так же мы поступим со всеми точками пространства, не лежащими на плоскости ; точки, которые расположены на плоскости , оставим на своих местах. Таким образом, все точки пространства, за исключением тех, что лежат на плоскости , переместятся; при этом расстояние от каждой точки до плоскости изменится в некоторое определенное число раз, общее для всех точек. Описываемое сейчас перемещение точек пространства называется его равномерным сжатием к плоскости ; число q носит название коэффициента сжатия.

Пусть дана некоторая поверхность F ; при равномерном сжатии пространства точки, которые ее составляют, переместятся и в новых положениях сотавят поверхность F ’. Будем говорить, что поверхность F ’ получено из F в результате равномерного сжатия пространства. Оказывается, что многие поверхности второго порядка (все, кроме гиперболического параболоида) можно получить в результате равномерного сжатия из поверхностей вращения).

ПРИМЕР. Доказать, что произвольный трехосный эллипсоид

может быть получен из сферы

в результате двух последовательных равномерных сжатий пространства к координатным плоскостям: к плоскости Oxy с коэффициентом сжатия и к плоскости Oxz с коэффициентом сжатия .

ДОКАЗАТЕЛЬСТВО. Пусть производится равномерное сжатие пространства к плоскости Oxy с коэффициентом и пусть — точка, в которую переходит при этом точка . Выразим координаты x’, y’, z ’ точки М’ через координаты x, y, z точки М. Так как прямая MM ’ перпендикулярна к плоскости Oxy , то x’=x, y’=y . С другой стороны, так как расстояние от точки М’ до плоскости Oxy равно расстоянию от точки М до этой плоскости, умноженному на число , то .

Таким образом, мы получаем искомые выражения:

, , (6)

, , (7)

Предположим, что M(x; y; z ) — произвольная точка сферы

.

Заменим здесь x, y, z их выражениями (7); получим

,

.

Следовательно, точка M’(x’; y’; z ’) лежит на эллипсоиде вращения. Аналогично, мы должны осуществить сжатие пространства к плоскости Oxz по формулам

, , ;

тогда получим трехосный эллипсоид и именно тот, уравнение которого дано в условии задачи.

Отметим еще, что однополостный гиперболоид и гиперболический параболоид суть линейчатые поверхности, то есть они состоят из прямых; эти прямые называются прямолинейными образующими указанных поверхностей.

имеет две системы прямолинейных образующих, которые определяются уравнениями:

, ;

, ,

где и — некоторые числа, не равные одновременно нулю. Гиперболический параболоид

также имеет две системы прямолинейных образующих, которые определяются уравнениями

, ;

, .

Конической поверхностью, или конусом, называется поверхность, которая описывается движущейся прямой (образующей) при условии, что эта прямая проходит через постоянную точку S и пересекает некоторую определенную линию L . Точка S называется вершиной конуса; линия L — направляющей.

Цилиндрической поверхностью, или цилиндром, называется поверхность, которая описывается движущейся прямой (образующей) при услвоии, что эта прямая имеет постоянное направление и пересекает некоторую определенную линию L (направляющую).

Гиперболический параболоид: определение, свойства и примеры

Гиперболический параболоид: определение, свойства и примеры — Наука

Содержание:

А гиперболический параболоид — поверхность, общее уравнение которой в декартовых координатах (x, y, z) удовлетворяет следующему уравнению:

(за) 2 — (г / б) 2 — г = 0.

Название «параболоид» происходит от того факта, что переменная z зависит от квадратов переменных x и y. В то время как прилагательное «гиперболический» связано с тем, что при фиксированных значениях z мы имеем уравнение гиперболы. По форме эта поверхность похожа на конское седло.

Описание гиперболического параболоида

Чтобы понять природу гиперболического параболоида, будет проведен следующий анализ:

1.- Мы возьмем частный случай a = 1, b = 1, то есть декартово уравнение параболоида остается как z = x 2 — Y 2 .

2.- Плоскости считаются параллельными плоскости ZX, то есть y = ctte.

3.- При y = ctte остается z = x 2 — C, которые представляют параболы с ветвями вверх и вершиной ниже плоскости XY.

4.- При x = ctte остается z = C — y 2 , которые представляют собой параболы с ветвями вниз и вершиной над плоскостью XY.

5.- При z = ctte остается C = x 2 — Y 2 , которые представляют собой гиперболы в плоскостях, параллельных плоскости XY. Когда C = 0, есть две прямые (на + 45º и -45º по отношению к оси X), которые пересекаются в начале координат на плоскости XY.

Свойства гиперболического параболоида

1.- Четыре разные точки в трехмерном пространстве определяют один и только один гиперболический параболоид.

2.- Гиперболический параболоид — это двояковыпуклая поверхность. Это означает, что, несмотря на искривленную поверхность, две разные линии проходят через каждую точку гиперболического параболоида, полностью принадлежащего гиперболическому параболоиду. Другая поверхность, которая не является плоскостью и имеет двойную линейку, — это гиперболоид вращения.

Именно второе свойство гиперболического параболоида позволило широко использовать его в архитектуре, поскольку поверхность может быть образована балками или прямыми веревками.

Второе свойство гиперболического параболоида позволяет дать ему альтернативное определение: это поверхность, которая может быть образована движущейся прямой линией, параллельной фиксированной плоскости, и разрезает две фиксированные линии, которые служат в качестве направляющих.. Следующий рисунок поясняет это альтернативное определение гиперболического параболоида:

Примеры работы

— Пример 1

Покажите, что уравнение:г = ху, соответствует гиперболическому параболоиду.

Решение

Преобразование будет применено к переменным x и y, соответствующим повороту декартовых осей относительно оси Z на + 45º. Старые координаты x и y преобразуются в новые x ‘и y’ в соответствии со следующими соотношениями:

а координата z остается прежней, т. е. z = z ‘.

Подставляя в уравнение z = x, мы имеем:

Применяя заметное произведение разницы на сумму, равную разности квадратов, мы имеем:

что явно соответствует изначально данному определению гиперболического параболоида.

Пересечение плоскостей, параллельных оси XY, с гиперболическим параболоидом z = x и определение равносторонних гипербол, которые имеют в качестве асимптотов плоскости x = 0 и y = 0.

— Пример 2

Определить параметры к Y б гиперболического параболоида, проходящего через точки A (0, 0, 0); В (1, 1, 5/9); С (-2, 1, 32/9) и D (2, -1, 32/9).

Решение

По своим свойствам четыре точки в трехмерном пространстве определяют единый гиперболический параболоид. Общее уравнение:

г = (х / а) 2 — (г / б) 2

Подставляем указанные значения:

Для точки A имеем 0 = (0 / a) 2 — (0 / б) 2 , уравнение, которое удовлетворяется при любых значениях параметров a и b.

Подставляя точку B, получаем:

5/9 = 1 / год 2 — 1 млрд 2

А для пункта C остается:

32/9 = 4 / год 2 — 1 млрд 2

Наконец, для точки D получаем:

32/9 = 4 / год 2 — 1 млрд 2

Что идентично предыдущему уравнению. В конечном итоге необходимо решить систему уравнений:

5/9 = 1 / год 2 — 1 млрд 2

32/9 = 4 / год 2 — 1 млрд 2

Вычитание второго уравнения из первого дает:

27/9 = 3 / год 2 откуда следует, что a 2 = 1.

Аналогичным образом второе уравнение вычитается из четверки первого, получая:

(32-20) / 9 = 4 / а 2 — 4 / а 2 -1 млрд 2 + 4 / б 2

Что упрощается как:

12/9 = 3 / б 2 ⇒ b 2 = 9/4.

Короче говоря, гиперболический параболоид, который проходит через заданные точки A, B, C и D, имеет декартово уравнение, задаваемое следующим образом:

— Пример 3

Согласно свойствам гиперболического параболоида, через каждую точку параболоида проходят две прямые, которые полностью в нем содержатся. Для случая z = x ^ 2 — y ^ 2 найдите уравнение двух прямых, которые проходят через точку P (0, 1, -1), явно принадлежащих гиперболическому параболоиду, так что все точки этих прямых также принадлежат тем же.

Решение

Используя замечательное произведение разности квадратов, уравнение для гиперболического параболоида можно записать так:

(х + у) (х — у) = с z (1 / с)

Где c — ненулевая константа.

Уравнение x + y = c z и уравнение x — y = 1 / c соответствуют двум плоскостям с нормальными векторами п= и м= . Векторное произведение м х п = дает нам направление линии пересечения двух плоскостей. Тогда одна из прямых, проходящих через точку P и принадлежащих гиперболическому параболоиду, имеет параметрическое уравнение:

Чтобы определить c, подставляем точку P в уравнение x + y = c z, получая:

Аналогичным образом, но учитывая уравнения (x — y = k z) и (x + y = 1 / k), мы имеем параметрическое уравнение линии:

Итак, две строки:

Они полностью содержатся в гиперболическом параболоиде z = x 2 — Y 2 проходящий через точку (0, 1, -1).

В качестве проверки предположим, что t = 1, что дает нам точку (1,2, -3) в первой строке. Вы должны проверить, находится ли он также на параболоиде z = x 2 — Y 2 :

-3 = 1 2 – 2 2 = 1 – 4 = -3

Это подтверждает, что он действительно принадлежит поверхности гиперболического параболоида.

Гиперболический параболоид в архитектуре

Гиперболический параболоид использовался в архитектуре великими архитекторами-авангардистами, среди которых выделяются имена испанского архитектора Антонио Гауди (1852-1926) и, в частности, также испанского Феликса Канделы (1910-1997).

Ниже приведены некоторые работы, основанные на гиперболическом параболоиде:

-Часовня города Куэрнавака (Мексика) работы архитектора Феликса Канделы.

-Океанография Валенсии (Испания), также Феликс Кандела.

Ссылки

  1. Энциклопедия математики. Линейчатая поверхность. Получено с: encyclopediaofmath.org
  2. Ллера Рубен. Гиперболический параболоид. Получено с: rubenllera.wordpress.com
  3. Вайсштейн, Эрик В. «Гиперболический параболоид». Материал из MathWorld — веб-ресурса Wolfram. Получено с: mathworld.wolfram.com
  4. Википедия. Параболоид. Получено с: en.wikipedia.com
  5. Википедия. Параболоид. Получено с: es.wikipedia.com
  6. Википедия. Рифленая поверхность. Получено с: en.wikipedia.com

Что такое белые дыры?

Хорхе Кремадес: простой юмор или банализация мачизма?

Параболоиды: определение, виды, сечения

Определение параболоида

Эллиптическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

Гиперболическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

В уравнениях (4.51) и (4.52) и — положительные параметры, характеризующие параболоиды, причем для эллиптического параболоида .

Начало координат называют вершиной каждого из параболоидов ((4.50) или (4.51)).

Плоские сечения эллиптического параболоида

Плоскость пересекает эллиптический параболоид (4.51) по линии, имеющей в этой плоскости уравнение , которое равносильно уравнению параболы с фокальным параметром . Сечение параболоида плоскостью получаем, подставляя в уравнение (4.51): . Это уравнение равносильно уравнению параболы с фокальным параметром . Эти сечения называются главными параболами эллиптического параболоида (4.51).

Рассмотрим теперь сечение эллиптического параболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.51), получаем

При уравнение не имеет действительных решений, т.е. плоскость при не пересекает параболоид (4.51). При уравнению (4.51) удовлетворяет одна вещественная точка — вершина параболоида. При 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» /> уравнение определяет эллипс с полуосями . Следовательно, сечение эллиптического параболоида плоскостью (при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» />) представляет собой эллипс, центр которого лежит на оси аппликат, а вершины — на главных параболах.

Таким образом, эллиптический параболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных параболах (рис.4.46,а).

Параболоид вращения

Эллиптический параболоид, у которого , называется параболоидом вращения . Такой параболоид является поверхностью вращения. Сечения параболоида вращения плоскостями (при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» />), представляют собой окружности с центрами на оси аппликат (рис.4.46,б). Его можно получить, вращая вокруг оси параболу , где .

Плоские сечения гиперболического параболоида

Сечения гиперболического параболоида координатными плоскостями и представляют собой параболы (главные параболы) или с параметрами или соответственно. Поскольку оси симметрии главных парабол направлены в противоположные стороны, гиперболический параболоид называют седловой поверхностью .

Рассмотрим теперь сечения гиперболического параболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.52), получаем При 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» /> уравнение равносильно уравнению гиперболы полуосями , то есть сечение гиперболического параболоида плоскостью при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» /> представляет собой гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе . При получаем уравнение сопряженной гиперболы с полуосями , т.е. сечение гиперболического параболоида плоскостью при представляет собой сопряженную гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе . При получаем уравнение пересекающихся прямых , т.е. сечение гиперболического параболоида плоскостью представляет собой пару пересекающихся в начале координат прямых.

Таким образом, гиперболический параболоид можно представить как поверхность, образованную гиперболами (включая и «крест» из их асимптот), вершины которых лежат на главных параболах (рис.4.47,а).

Сечение параболоида плоскостью , где — произвольная постоянная, представляет собой параболу

равную главной параболе с параметром , вершина которой лежит на другой главной параболе с параметром . Поэтому гиперболический параболоид можно представить как поверхность, получающуюся при перемещении одной главной параболы так, чтобы ее вершина «скользила» по другой главной параболе (рис.4.47,б).

1. Гиперболический параболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (рис.4.47,в).

2. Ось аппликат канонической системы координат является осью симметрии параболоида, а координатные плоскости — плоскостями симметрии параболоида.

В самом деле, если точка принадлежит параболоиду (эллиптическому или гиперболическому), то точки с координатами при любом выборе знаков также принадлежат параболоиду, поскольку их координаты удовлетворяют уравнению (4.51) или (4.52) соответственно. Поэтому параболоид симметричен относительно координатных плоскостей и координатной оси .


источники:

http://ru1.warbletoncouncil.org/paraboloide-hiperbolico-6291

http://mathhelpplanet.com/static.php?p=paraboloid