Уравнение перпендикуляра из точки на плоскость

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Уравнение перпендикуляра из точки на плоскость

Прямая и плоскость

Даны канонические уравнения прямой

Пример. Найти проекцию точки А (2; –1; 3) на плоскость x + 2 y – z – 3 =0.

Решение. Проекцию точки А на плоскость найдем как точку пересечения плоскости перпендикуляром, опущенным из точки А на данную плоскость. Составим уравнение перпендикуляра, опущенного из точки А (2; –1; 3) на плоскость x + 2 y – z – 3 = 0:

Из условия перпендикулярности прямой и плоскости имеем ,

т.е. m = 1, n = 2, p = –1. Уравнения перпендикуляра примут вид

.

Чтобы найти точку пересечения прямой и плоскости, нужно решить систему из уравнений прямой и плоскости:

или или

Решая указанную систему, получим координаты проекции точки А на данную плоскость: (3; 1; 2).

Задача 22245 5. Найти уравнения перпендикуляра к.

Условие

5. Найти уравнения перпендикуляра к плоскости x-2y+z-9 = 0, проходящего через точку А(-2;0; -1), и определить координаты основания этого перпендикуляра.

Решение

Нормальный вектор плоскости, является направляющим вектором этого перпендикуляра.
vector=(A;B;C)=(1;-2;1)

Уравнение прямой, проходящей через точку с заданным направляющим вектором (p;q;r):

Находим координаты точки Р — основания перпендикуляра или точки пересечения прямой и плоскjсти
<(x+2)/1=(y-0)/(-2)=(z+1)/1

и подставляем в первое
х-2*(-2х-4)+(х+1)-9=0
6х=0
х=0
y=-2*0 — 4 = — 4
z=0 + 2= 2


источники:

http://lms2.sseu.ru/courses/eresmat/course1/prakt1/razdpr1_10/pri1_10_12.htm

http://reshimvse.com/zadacha.php?id=22245