Уравнение перпендикуляра к плоскости через точку онлайн

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Найти уравнение плоскости

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Составить уравнение плоскости

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \( -\frac<2> <3>\)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \( -1\frac<5> <7>\)

Составить уравнение плоскости

Немного теории.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость \( \pi \);
точка \( M_0(x_0;y_0;z_0) \in \pi \);
вектор \( \vec(A;B;C) \), перпендикулярный плоскости \( \pi \) (смотри рисунок).

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости \( \pi \) тогда и только тогда, когда векторы \( \vec \) и \( \vec \) взаимно перпендикулярны. Так как координаты вектора \( \vec \) равны \( x-x_0, \; y-y_0, \; z-z_0 \) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости \( \pi \) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
\( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 \)
Далее, обозначая число \( -Ax_0-By_0-Cz_0 \) через \( D \), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение \( Ax+By+Cz+D=0 \) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение \( x_0, \; y_0, \; z_0 \) ( если, например, \( C \neq 0 \), то, взяв произвольные х0, и y0, из уравнения получим: \( z_0 = -\fracx_0 — \fracy_0-\frac \) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость \( \pi \), проходящую через точку M0(x0 и перпендикулярную вектору \( \vec(A;B;C) \).

Вектор \( \vec(A;B;C) \), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения \( A_1x+B_1y+C_1z+D_1=0 \) и \( A_2x+B_2y+C_2z+D_2=0 \) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ \frac = \frac = \frac = \frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости \( \pi_1 \), и \( \pi_2 \), заданные соответственно уравнениями

При любом расположении плоскостей \( \pi_1 \), и \( \pi_2 \) в пространстве один из углов \( \varphi \) между ними равен углу между их нормалями \( \vec(A_1;B_1;C_1) \) и \( \vec(A_2;B_2;C_2) \) и вычисляется по следующей формуле:
$$ \cos \varphi = \frac < \vec\cdot \vec>< |\vec| |\vec| > = \frac <\sqrt\; \sqrt > \tag <3>$$

Второй угол равен \( 180^\circ -\cos \varphi \)

Условие параллельности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) параллельны, то коллинеарны их нормали \( \vec \) и \( \vec \), и наоборот. Но тогда
$$ \frac = \frac = \frac \tag <4>$$
Условие (4) является условием параллельности плоскостей \( \pi_1 \) и \( \pi_2 \)

Условие перпендикулярности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) взаимно перпендикулярны, то их нормали \( \vec \) и \( \vec \) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей \( \pi_1 \) и \( \pi_2 \):
\( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 \)


источники:

http://ru.onlinemschool.com/math/assistance/cartesian_coordinate/plane/

http://www.math-solution.ru/math-task/lp-eqplain