Уравнение перпендикуляра опущенного из вершины на плоскость

Уравнение перпендикуляра опущенного из вершины на плоскость

Прямая и плоскость

Даны канонические уравнения прямой

Пример. Найти проекцию точки А (2; –1; 3) на плоскость x + 2 y – z – 3 =0.

Решение. Проекцию точки А на плоскость найдем как точку пересечения плоскости перпендикуляром, опущенным из точки А на данную плоскость. Составим уравнение перпендикуляра, опущенного из точки А (2; –1; 3) на плоскость x + 2 y – z – 3 = 0:

Из условия перпендикулярности прямой и плоскости имеем ,

т.е. m = 1, n = 2, p = –1. Уравнения перпендикуляра примут вид

.

Чтобы найти точку пересечения прямой и плоскости, нужно решить систему из уравнений прямой и плоскости:

или или

Решая указанную систему, получим координаты проекции точки А на данную плоскость: (3; 1; 2).

Расстояние от точки до плоскости

Формула для вычисления расстояния от точки до плоскости

Если задано уравнение плоскости A x + B y + C z + D = 0 , то расстояние от точки M(M x , M y , M z ) до плоскости можно найти, используя следующую формулу:

d =|A·M x + B·M y + C·M z + D|
√ A 2 + B 2 + C 2

Примеры задач на вычисление расстояния от точки до плоскости

Решение. Подставим в формулу коэффициенты плоскости и координаты точки

d = |2·0 + 4·3 + (-4)·6 — 6| √ 4 + 16 + 16 = |0 + 12 — 24 — 6| √ 36 = |-18| 6 = 3

Ответ: расстояние от точки до плоскости равно 3.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Уравнение перпендикуляра опущенного из вершины на плоскость

Расстояние от точки до плоскости .

Расстояние от произвольной точки М00, у0, z 0 ) до плоскости Ах+Ву+С z + D =0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

Пример. Найти уравнение плоскости, проходящей через две точки P (2; 0; -1) и

Q (1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0 параллелен искомой плоскости.

Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2 z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости ( A , B , C ). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11 × 2 + 7 × 1 — 2 × 4 + D = 0; D = -21.

Итого, получаем уравнение плоскости: 11 x — 7 y – 2 z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4 x – 3 y + 12 z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

Итого, получаем искомое уравнение: 4 x – 3 y + 12 z – 169 = 0

Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A 2 (2; -1; 3), A 3 (2; 1; 1),

Сначала найдем вектор нормали к грани А1А2А3 как векторное произведение векторов и.

= (2-1 ; 1-0; 1-3) = (1; 1; -2);

Найдем угол между вектором нормали и вектором .

-4 – 4 = -8.

Искомый угол g между вектором и плоскостью будет равен g = 90 0 — b .

5) Найти объем пирамиды.

(ед 3 ).

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2 x + 2 y + 2 z – 8 = 0

При использовании компьютерной версии “Курса высшей математики” можно запустить программу, которая решит рассмотренный выше пример для любых координат вершин пирамиды.

Угол между плоскостями.

Угол между двумя плоскостями в пространстве j связан с углом между нормалями к этим плоскостям j 1 соотношением: j = j 1 или j = 180 0 — j 1 , т.е.

cos j = ± cos j 1 .

Определим угол j 1 . Известно, что плоскости могут быть заданы соотношениями:

, где

( A 1 , B 1 , C 1 ), ( A 2 , B 2 , C 2 ). Угол между векторами нормали найдем из их скалярного произведения:

.

Таким образом, угол между плоскостями находится по формуле:

Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.

Условия параллельности и перпендикулярности

На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей.

Для того, чтобы плоскости были перпендикулярны необходимо и достаточно, чтобы косинус угла между плоскостями равнялся нулю. Это условие выполняется, если:

.

Плоскости параллельны, векторы нормалей коллинеарны: ïï .Это условие выполняется, если: .


источники:

http://ru.onlinemschool.com/math/library/analytic_geometry/p_plane/

http://pipec8.narod.ru/mat/vec/15.htm