Уравнение ph для буферного раствора

РН буферных растворов.

Для буферной системы I типа НА/A — концентрацию ионов Н + в растворе легко вычислить, исходя из константы диссоциации слабой кислоты (для простоты изложения вместо активностей ионов в выражении для будем использовать их концентрации):

,
.

В присутствии второго компонента буферного раствора – сильного электролита – равновесие диссоциации слабой кислоты НA, согласно принципу Ле Шателье, смещено влево. Поэтому можно считать, что концентрация недиссоциированных молекул НA практически равна концентрации кислоты в буферном растворе, а концентрация ионов A — равна концентрации соли.

В таком случае можно записать:

,(3)

где С(кислоты) и С(соли) – молярные концентрации кислоты и соли.

Если равенство (3) прологарифмировать (взять отрицательный десятичный логарифм левой и правой частей уравнения), то получим:

.(4)

Так, рН фосфатной буферной системы состава NaH2PO4/Na2HPO4 можно рассчитать по уравнению:

,

где – показатель константы диссоциации фосфорной кислоты по второй ступени.

В случаях, когда требуется получить буферный раствор с задан-ным значением pH, используют уравнение:

,(5)

где индексом «0» обозначены характеристики исходных растворов кислоты и соли, смешиванием которых получают требуемую буферную смесь.

Для буферной системы II типа В/ВН + , например аммонийной, гидроксидный и водородный показатели вычисляют по уравнениям:

,(6)
,(6¢)

где – показатель константы диссоциации основания.

В общем виде уравнение для расчета pH буферных систем выглядит следующим образом:

,(7)

и называется уравнениемГендерсона-Гассельбаха.

Из уравнения Гендерсона-Гассельбаха следует, что:

1. Величина рН буферных растворов зависит от константы диссоциации кислоты или основания и от соотношения количеств компонентов, но практически не зависит от разбавления или концент-рирования растворов. Действительно, в этих процессах концентрации компонентов буферного раствора изменяются пропорционально, поэтому их соотношение, которое определяет значение рН буферного раствора, остается неизменным.

Если концентрации компонентов буферных растворов превы-шают 0,1 моль/л, то в расчетах необходимо учитывать коэффициенты активности ионов системы.

2. Показатель константы диссоциации слабого электролита опре-деляет область буферного действия раствора, т.е. тот интервал значе-ний водородного показателя, в котором сохраняются буферные свой-ства системы. Поскольку буферное действие продолжается, пока не израсходовано 90% компонента (т.е. его концентрация не уменьши-лась на порядок), то область (зона) буферного действия отличается от на 1 единицу:

;

.

Амфолиты могут иметь несколько зон буферного действия, каждая из которых отвечает соответствующей константе :

.

Таким образом, максимально допустимое соотношение компонентов раствора, при котором он проявляет буферное действие, составляет 10:1.

Пример 1. Можно ли приготовить ацетатный буфер с рН = 6,5, если уксусной кислоты равен 4,74?

Поскольку зона буферного действия определяется как , для ацетатного буфера она находится в интервале значений рН от 3,74 до 5,74. Значение рН = 6,5 лежит за пределами зоны действия ацетатного буфера, поэтому на основе ацетатной буферной системы такой буфер приготовить нельзя.

Буферная емкость.

Прибавлять кислоту или щелочь, существенно не меняя рН буферного раствора, можно лишь в относительно небольших коли-чествах, так как способность буферных растворов сохранять постоян-ство рН ограничена.

Величина, характеризующая способность буферного раствора противодействовать смещению реакции среды при добавлении кислот и щелочей, называется буферной емкостью (В).Различают буферную емкость по кислоте ( ) и по щелочи ( ).

Буферная емкость (В) измеряется количеством кислоты или щелочи (моль или ммоль эквивалента), добавление которого к 1 л буферного раствора изменяет рН на единицу.

На практике буферную емкость определяют титрованием. Для этого определенный объем буферного раствора титруют сильной кислотой или щелочью известной концентрации до достижения точки эквивалентности. Титрование проводят в присутствии кислотно-основных индикаторов, при правильном выборе которых фиксируют состояние, когда компонент буферной системы прореагирует полностью. По полученным результатам рассчитывают величину буферной емкости ( или ):

(8)
(9)

где С( к-ты), С( щел) — молярные концентрации эквивалента кислоты и щелочи (моль/л);

V(к-ты ), V(щел) — объемы добавленных растворов кислоты или щелочи (л; мл);

V(буфера) — объем буферного раствора (л; мл);

pH0 и pH — значения рН буферного раствора до и после титрования кислотой или щелочью (изменение рН берется по абсолютной величине).

Буферную емкость выражают в [моль/л] или в [ммоль/л].

Буферная емкость зависит от ряда факторов:

1. Чем больше абсолютное содержание компонентов пары основание/сопряженная кислота, тем выше буферная емкость буфер-ного раствора.

Буферная емкость зависит от соотношения количеств компо-нентов буферного раствора, а следовательно, и от рН буфера. Буфер-ная емкость максимальна при равных количествах компонентов бу-ферной системы и уменьшается с отклонением от этого соотношения.

3. При различном содержании компонентов буферные емкости раствора по кислоте и по щелочи отличаются. Так, в буферном растворе I типа чем больше содержание кислоты, тем больше буферная емкость по щелочи, а чем больше содержание соли, тем больше буферная емкость по кислоте. В буферном растворе II типа чем больше содержание соли, тем больше буферная емкость по щелочи, а чем больше содержание основания, тем больше буферная емкость по кислоте.

Пример 2. Для приготовления ацетатных буферных смесей растворы кислоты и соли одинаковой молярной концентрации были смешаны в следующих объемных соотношениях:

Состав буферной системыОбъемные соотношения компонентов буферной системы
раствор Iраствор IIраствор III
CH3COOH
CH3COONa

Не прибегая к расчетам, определить, в каком из трёх буферных растворов будет наблюдаться:

а) наибольшее значение рН;

б) максимальная буферная емкость;

в) наибольшая буферная емкость по кислоте.

В случае равных концентраций компонентов уравнение (5) принимает вид:

.

Так как во всех трех растворах одинакова, то значение pH буфера будет определяться соотношением . Следовательно, наибольшим значением pH будет обладать I раствор ( ):

Максимальной буферной емкостью характеризуется II раствор, так как в нем соотношение количеств компонентов составляет 1:1.

Буферная емкость по кислоте для ацетатного буфера определя-ется содержанием сопряженного основания, т.е. соли: чем оно больше, тем больше буферная емкость раствора по кислоте. Поэтому:

Таким образом, наибольшую емкость по кислоте будет иметь I раствор.

Приготовление буферных растворов

Почему точность взвешивания так важна для качества буферного раствора?

Приготовление буферных растворов — распространенная процедура в химических и биохимических лабораториях. Буферный раствор — это смесь слабой кислоты и сопряженного с ней основания или слабого основания и сопряженной с ним кислоты. Буферные растворы позволяют поддерживать стабильный уровень pH другого раствора, смешанного с буферным. Если в раствор попадает небольшое количество другой кислоты или щелочи или они образуются в ходе химической реакции, буферный раствор не допустит изменения значения pH всего раствора. Поэтому буферы очень полезны в разных задачах, где требуется поддержание стабильного уровня pH. Другие названия буферных растворов — также pH-буферы, водород-ионные буферы или просто буферы.

Например, в крови человека содержатся естественные буферы для поддержания рН в диапазоне от 7,35 до 7,45 — именно при таком уровне могут нормально действовать энзимы. Поскольку активность энзимов зависит от pH, при проведении биохимических анализов необходимо поддержание этого параметра на постоянном уровне. Буферные растворы применяются в шампунях для предотвращения раздражения кожи, в детских лосьонах для противодействия росту бактерий, а также в растворах для контактных линз, чтобы уровень pH жидкости оставался совместимым с уровнем рН глаз.

Приготовление буферного раствора состоит из нескольких этапов: взвешивание компонентов, растворение компонентов, корректировка pH и дополнение до заданного объема. Поскольку итоговое значение pH в буфере зависит от соотношения кислоты и основания, чрезвычайно важно взвешивать компоненты с высокой точностью. Все используемое оборудование (весы, пипетки и рН-метр) должно быть правильно откалибровано и иметь достаточную точность.

Buffer Preparation

Видео: приготовление буферного раствора — простота, удобство и точность

Для приготовления буферного раствора нужны время и особая тщательность, иначе раствор не будет действовать так, как требуется. Если качество продукции или биохимических анализов зависит от качества буферных растворов, ошибки при приготовлении буферов недопустимы.

Посмотрите видео и узнайте, как можно сэкономить время и силы, если готовить буферные растворы с помощью технических весов и рН-метров МЕТТЛЕР ТОЛЕДО.

Перейдите в один из следующих разделов, чтобы узнать больше:

Как готовить буферные растворы? Стандартная процедура

Приготовление буферного раствора состоит из нескольких этапов: расчет концентрации и количества компонентов в соответствии с назначением и нужным объемом раствора; взвешивание компонентов; растворение компонентов; корректировка pH; дополнение до заданного объема; маркировка и документирование; использование раствора или его сохранение для применения в будущем.

  1. Выберите рецептуру из базы данных.
  2. Рассчитайте количество компонентов, указанных в рецептуре, в соответствии с требуемым объемом буферного раствора.
  3. Взвесьте компоненты и поместите их в сосуд.
  4. Растворите компоненты в подходящем растворителе (обычно в воде).
  5. С помощью рН-метра проверьте и скорректируйте значение pH.
  6. Долейте раствор до необходимого объема.
  7. Переместите раствор в бутыль для хранения и нанесите на нее соответствующую маркировку.
  8. Задокументируйте результаты.

Буферный раствор — это раствор, сохраняющий свой показатель pH при добавлении небольшого количества кислоты или основания. Буферный раствор состоит из слабой кислоты и сопряженного с ней основания. Постоянный уровень pH в буферном растворе поддерживается благодаря поглощению протонов, которые высвобождаются в ходе реакции, или высвобождению протонов, если в ходе реакции они поглощаются. К созданию буферных растворов привело открытие того, что частично нейтрализованные растворы слабых кислот или оснований не меняют pH при добавлении к ним небольшого количества сильной кислоты или основания.

Сопряженное основание — это кислота, потерявшая протон.
HA ↔ H + + A —
Кислота ↔ протон + сопряженное основание

Сопряженная кислота — это основание, которое приобрело протон.
A + H + ↔ H + A
Основание + протон ↔ сопряженная кислота

Так устанавливается равновесие между диссоциированной и недиссоциированной формами.
Например, слабая уксусная кислота частично диссоциирует в воде, образуя ацетат-ион:
CH3COOH ↔ H + + CH3COO -.
Недиссоциированная уксусная кислота, ионы водорода и диссоциированный ион находятся в растворе в равновесии.

Ацетат натрия также диссоциирует в воде с образованием такого же ацетат-иона:
CH3COONa ↔ Na + + CH3COO -.
Недиссоциированный ацетат натрия, а также ионы натрия и ацетата находятся в растворе в равновесии.

Водный раствор смеси уксусной кислоты и ацетата натрия поэтому может поглощать ионы H + , добавляемые с кислотой, присоединяя ионы водорода к ацетатному основанию и образуя уксусную кислоту. Когда же в раствор попадают ионы OH — из-за добавления щелочи, они соединяются с молекулами кислоты (H + ) и образуют воду. Таким образом система пытается восстановить равновесие, и pH раствора остается на одном уровне. Так проявляется буферное действие раствора.

Что происходит после добавления кислоты в буферный раствор?

Когда к равновесной смеси слабой кислоты и ее сопряженного основания добавляется сильная кислота (с большим количеством H+), точка равновесия смещается влево в соответствии с принципом Ле Шателье.

Что происходит после добавления основания в буферный раствор?

Аналогичным образом, если в смесь добавляется сильное основание, то концентрация ионов водорода снижается меньше, чем ожидалось с учетом количества добавляемого основания. Это происходит потому, что точка равновесия смещается вправо, чтобы компенсировать потерю H + в реакции с основанием.

Разновидности буферных растворов

Буферные растворы, состоящие из слабой кислоты и ее сопряженного основания, считаются кислыми и имеют рН 7. Примером щелочного буфера может служить водный раствор гидроксида аммония (слабое основание) и хлорида аммония (сопряженная кислота), имеющий рН 9,25.

На что следует обращать внимание при приготовлении буферного раствора

Буферы работают наиболее эффективно, если их pH примерно равен pH исследуемой системы или раствора. При изучении энзимов в биологии человека необходима система, соответствующая pH крови (7,35–7,45), в противном случае энзимы будут функционировать неправильно. Если у буферной системы pH выходит за пределы требуемого диапазона, это также отрицательно повлияет на анализ.

Поэтому необходимо знать, как приготовить буферные растворы с заданным pH. Это можно сделать несколькими способами:

    Корректировка pH
    Сначала кристаллическая кислота или основание растворяется в объеме воды, равном примерно 60–70 % от требуемого конечного объема буферного раствора. Показатель pH проверяется, а затем корректируется. Если используется кристаллическая кислота, то для коррекции pH применяют основание, не выделяющее ионы, способные нарушить параметры исследуемой системы. Если используется кристаллическое основание, то рН корректируется с помощью подходящей кислоты. После достижения требуемого pH в буферный раствор можно долить воду, чтобы получить нужный объем.

Смешивание с раствором кислоты или основания
В этом методе раствор кислоты или основания смешивается с раствором соответствующей соли. Концентрация исходных растворов должна быть такой же, как и у целевого буфера. Соотношения смешиваемых растворов можно менять, чтобы получить различные значения pH итогового буфера. Можно также следить за изменением рН при добавлении одного раствора к другому.

Уравнение Гендерсона — Гассельбаха.
Оценить pH буферного раствора можно по уравнению Гендерсона — Гассельбаха с помощью константы диссоциации pKa. Если слабая кислота (HA), находящаяся в растворе, диссоциирует на ионы водорода (H + ) и достигает равновесия с сопряженным основанием (A — ), константа диссоциации покажет силу кислоты в этой точке равновесия. Уравнение Гендерсона — Гассельбаха выглядит следующим образом:

где pKa — константа диссоциации слабой кислоты;
[A-] — концентрация сопряженного основания в точке равновесия;
[HA] — концентрация кислоты в точке равновесия.

Если в точке равновесия концентрации сопряженного основания и кислоты одинаковы, то pH равно константе диссоциации. В этой точке буферный раствор обладает максимальной буферной емкостью.
Уравнение Гендерсона — Гассельбаха также используется для определения константы диссоциации слабых кислот посредством прямых измерений pH.

Преимущества универсальных буферных растворов
Универсальные буферные растворы состоят из нескольких комбинаций кислотно-основных пар. Это позволяет использовать универсальные буферные растворы для поддержания уровня pH раствора в более широком диапазоне и, следовательно, в более широком круге задач.

Дополнительные советы по приготовлению и использованию буферных растворов

  • Разработайте стандартную операционную процедуру.
    Полезно задокументировать процедуру приготовления буферного раствора и следить за ее соблюдением всеми сотрудниками. Это обеспечит стабильность и воспроизводимость. В СОП должны быть указаны подробные данные об используемых материалах и точно описаны действия по добавлению компонентов и измерению pH. В СОП можно также включить многие из приведенных далее рекомендаций.
  • Используйте средства индивидуальной защиты.
    Необходимо использовать соответствующие средства индивидуальной защиты (СИЗ), например защитные очки и одежду, особенно при работе с сильными кислотами или основаниями.
  • Проверяйте наличие микробиологических загрязнений (особенно при работе с биологическими препаратами).
    Перед использованием буферного раствора проверьте емкость на предмет микробиологических загрязнений. Микробиологические загрязнения особенно часто появляются в буферных растворах с рН, близким к нейтральному. Видимые признаки — некоторое помутнение раствора или осадок на дне.
  • Правильно работайте с pH-метром.
    Чтобы измерения pH были точными, pH-метры нужно регулярно калибровать и поддерживать в рабочем состоянии. Перед использованием электрод должен быть надлежащим образом подготовлен и заправлен достаточным количеством буферного раствора, чтобы диафрагма электрода была полностью в него погружена. Прежде чем снимать показания, обязательно дождитесь стабилизации значения pH, а после измерения промойте электрод дистиллированной водой. Проводите измерения рН-метром только при комнатной температуре или используйте электрод со встроенным датчиком температуры.
  • Учитывайте температуру.
    Диссоциация может зависеть от температуры. Буферный раствор необходимо готовить при той же температуре, при которой будет проходить анализ. Убедитесь также, что электрод был откалиброван при той же температуре, при которой проводятся измерения.
  • Следите за концентрацией.
    Буферные растворы часто разбавляют до концентрации, которая требуется для выполнения анализа. Однако изменение концентрации может повлиять на уровень диссоциации. Поскольку pH отражает концентрацию ионов водорода (H + ), изменение уровня диссоциации может привести к изменению pH. После разбавления уровень рН буферного раствора следует проверить еще раз.

Буферные растворы

Буферные растворы — это растворы, величина рН которых мало изменяется при добавлении к ним небольших количеств сильных кислот или щелочей, а также при разбавлении.

C точки зрения протонной теории простейший буферный раствор состоит из слабой кислоты и сопряженного ей основания или слабого основания и его сопряженной кислоты. В этом случае буферное действие растворов характеризуется наличием кислотно-основного равновесия:

Образуемые сопряженные кислотно-основные пары НА/А– и В/ВН+ называют буферными системами.

Классификация буферных систем

1. Кислотные. Состоят из слабой кислоты и соли этой кислоты. Например, ацетатная буферная система (CH3COOH+ СН3СООNa ), гидрокарбонатная буферная система (H2CO3 +NaHCO3 ).

2. Основные. Состоят из слабого основания и его соли. Например, аммиачная буферная система (NH3⋅H2O + NH4Cl).

3. Солевые. Состоят из кислой и средней соли или двух кислых солей. Например, карбонатная буферная система (NaHCO3+Na2CO3 ), фосфатная буферная система (КН2PO4 + К2НPO4).

4. Аминокислотные и белковые. Если суммарный заряд молекулы аминокислоты или белка равен нулю (изоэлектрическое состояние), то растворы этих соединений не являются буферными. Их буферное действие начинает проявляться тогда, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из изоэлектрического состояния в форму “белок-кислота” или соответственно в форму “белок-основание”. Образуется смесь двух форм белка: а) слабая “белок-кислота” + соль этой слабой кислоты; б) слабое “белок — основание” + соль этого слабого основания:

где R — макромолекулярный остаток белка.

Расчет рН буферных систем

Для расчета рН в буферном растворе на примере ацетатного буфера рассмотрим процессы, в нем протекающие, и их влияние друг на друга.

Ацетат натрия практически полностью диссоциирует на ионы, ацетат-ион подвергается гидролизу, как ион слабой кислоты:

CH3COONa → Na+ + CH3COO–

CH3COO– + HOH ⇄ CH3COOH + OH–

Уксусная кислота, также входящая в буфер, диссоциирует лишь в незначительной степени:

CH3COOН ⇄CH3COO– + H+

Слабая диссоциация СН3СООН еще более подавляется в присутствии СН3СООNa, поэтому концентрацию недиссоциированной уксусной кислоты принимаем практически равной ее начальной концентрации:

С другой стороны, гидролиз соли также подавлен наличием в растворе кислоты. Поэтому можно считать, что концентрация ацетат-ионов в буферной смеси практически равна исходной концентрации соли без учета концентрации ацетат-ионов, образующихся в результате диссоциации кислоты:

Согласно закону действующих масс, равновесие между продуктами диссоциации уксусной кислоты и недиссоциированными молекулами подчиняется уравнению:

Кд = .

Подставив общую концентрацию кислоты и соли в уравнение константы диссоциации, получим: [Н+] = Кд,

отсюда для кислотных буферных систем: рН = рК(кислоты) + lg . Это уравнение называют уравнением Гендерсона – Гассельбаха.

рК — отрицательный десятичный логарифм константы диссоциации

После аналогичного вывода для основных буферных систем:

рОН = рК(основания) + lg , рН =14 – рК(основания) – lg

где рК(кислоты),рК(основания) — отрицательный десятичный логарифм константы электролитической диссоциации слабой кислоты; слабого основания; [соль] — концентрация соли, [кислота] — концентрация кислоты, [основание] — концентрация основания.

Из этих уравнений видно, что рН кислотной (основной) буферной системы зависит от природы слабого электролита (рК(кислоты), рК(основания)) и от соотношения концентраций соли и кислоты (основания).

Следует отметить, что буферные системы эффективно поддерживают рН в диапазоне: рК(кислоты)± 1 для кислотных систем; 14 – (рК(основания)± 1) для основных систем.

Механизм действия буферных систем:

1. Разбавление. При разбавлении водой происходит уменьшение концентрации обоих компонентов в буферной системе в одинаковой степени, поэтому величина их соотношения не изменится. рК(кислоты) и рК(основания) являются постоянными при данной температуре и не зависят от разбавления. Действительно, одновременное понижение концентраций кислоты и соли в ацетатной буферной системе от 0,1М до 0,001М при разбавлении водой изменяет рН буферного раствора с 4,63 до 4,73 (это ничтожное изменение рН при разбавлении буферного раствора в 100 раз обусловлено некоторым изменением коэффициента активности соли). Следовательно, разбавление в конечном итоге мало изменяет рН буферных систем.

2. Добавление кислот и оснований. При добавлении небольших количеств сильных кислот или оснований рН буферных систем изменяется незначительно. Например, рассмотрим ацетатный буфер:

кислотный компонент – основной компонент–

слабая кислота сопряженное основание

а) При добавлении к ацетатному буферу небольшого количества HCl, происходит взаимодействие ионов Н+ с основным компонентом буферного раствора:

Н+ + СН3СОО–⇄ СН3СООН.

Степень диссоциации СН3СООН мала и концентрация [H+] практически не меняется. рН буферного раствора уменьшится, но незначительно.

Таким образом, если к ацетатному буферу добавить Х моль/л HCl, то уравнение для расчета рН буферной системы принимает вид:

рН = рК(кислоты) + lg

б) При добавлении небольшого количества NaOH, – ионы нейтрализуются кислотным компонентом буферного раствора:

+ СН3СООН ⇄ СН3СОО – + Н2О.

В результате этого, добавленное сильное основание заменяется эквивалентным количеством слабого сопряженного основания (СН3СОО–), которое в меньшей степени влияет на реакцию cреды. рН буферного раствора увеличивается, но незначительно.

Таким образом, если к ацетатному буферу добавить У моль/л NaOH, то уравнение для расчета рН буферной системы принимает вид:

рН = рК(кислоты) + lg

Способность буферного раствора сохранять значение рН при добавлении сильной кислоты или щелочи приблизительно на постоянном уровне характеризует буферная емкость.

Буферная емкость (В) — это число молей эквивалента сильной кислоты или щелочи, которое необходимо добавить к 1 л буферного раствора, чтобы сместить его рН на единицу.

Буферная емкость системы определяется по отношению к добавляемым кислоте (Вкисл.) или основанию (щелочи) (Восн.) и рассчитывается по формулам:

Вкисл.= Восн.=

где V(HA), V(B) — объемы добавленных кислоты или щелочи, л.; Сн(НА), Сн(В) — молярные концентрации эквивалента соответственно кислоты и щелочи; V(б. р.) — объем исходного буферного раствора, л.; рНо, рН — значения рН буферного раствора до и после добавления кислоты или щелочи; |рН-рНо| — разность рН по модулю.

Буферная емкость по отношению к кислоте (Вкисл.) определяется концентрацией (количеством эквивалентов) компонента с основными свойствами; буферная емкость по отношению к основанию (Восн.) определяется концентрацией (количеством эквивалентов) компонента с кислотными свойствами в буферном растворе.

Максимальная буферная емкость при добавлении сильных кислот и оснований достигается при соотношении компонентов буферного раствора равном единице, когда рН = рК, при этом Восн.= В кисл. (рис.1).Поэтому, применение любой буферной смеси ограничено определенной областью рН (областью буферирования), а именно:

рН = рК(кислоты)± 1 для кислотных систем, или

рН= 14 – (рК(основания)± 1) для основных систем.

Буферная емкость зависит не только от отношения концентраций компонентов буферного раствора, но и от общей концентрации буферной смеси.

Рис.1. Изменение буферной емкости в зависимости от величины отношения [соль]/[кислота].

Пусть, например, даны два буферных раствора, один из которых содержит по 100, а другой – по 10 миллимолей уксусной кислоты и ацетата натрия. Сравним, как изменяются их рН при добавлении к 1 л каждого раствора 5 миллимолей соляной кислоты.

Добавляемая кислота вступит в реакцию с ацетатом натрия, и это отношение в первом растворе станет равным 0,9, а во втором 0,33. В итоге у первого раствора отношение соль/кислота и, следовательно, величина рН изменились меньше. Отсюда видно, что первый буферный раствор обладает большей буферной емкостью.

Таким образом, буферная емкость в основном зависит от соотношения концентраций компонентов и их абсолютных концентраций, а следовательно, от разбавления.

Буферные системы организма

Главным источником ионов водорода в организме является углекислый газ, образующийся в результате метаболизма (обмена веществ) ≈ 15000 ммоль/сутки.

Гидратация углекислого газа приводит к образованию угольной кислоты:

СО2 + Н2О ⇄ Н2СО3⇄ + Н+

В меньшей степени количество ионов Н+ (30–80 ммоль/сутки) обусловлено поступлением в организм, а также образованием в нем таких кислот как серной (в результате обмена серусодержащих аминокислот), фосфорной (при метаболизме фосфорсодержащих соединений), органических кислот, образующихся при неполном окислении липидов и углеводов.

Организм освобождается от кислот благодаря процессам дыхания и мочевыделения, т. е. в организме существует взаимосвязь между метаболическими процессами и газообменом. В оценке кислотно-основного состояния организма важно не только определение значения рН, но и характеристика механизмов, обеспечивающих регуляцию этого параметра.

Если бы в организме не было немедленных буферных механизмов и респираторной (дыхательной) компенсации, то тогда даже обычные, ежедневные нагрузки кислотами сопровождались бы значительными колебаниями величины рН.

Постоянство рН жидких сред организма поддерживается в живых организмах буферными системами. Главным из них являются гидрокарбонатная, гемоглобиновая, фосфатная и белковая. Действие всех буферных систем в организме взаимосвязано, что обеспечивает биологическим жидкостям постоянное значение рН. В организме человека и животных буферные системы находятся в крови (плазме и эритроцитах), в клетках и межклеточных пространствах других тканей.

Буферные системы крови представлены буферными системами плазмы крови и буферными системами эритроцитов. Буферные системы плазмы – гидрокарбонатная, белковая и фосфатная, роль последней незначительна. На их долю приходится ≈ 44% буферной емкости крови. Буферные системы эритроцитов – гемоглобиновая, гидрокарбонатная, система органических фосфатов (фосфатная). На их долю приходится ≈ 56% буферной емкости крови.


источники:

http://www.mt.com/int/ru/home/applications/Laboratory_weighing/buffer-preparation.html

http://pandia.ru/text/80/586/88844.php