Уравнение планка используется для нахождения

Формула Планка

Вы будете перенаправлены на Автор24

Идея Планка

В 1900 г. М. Планк предложил интерполяционную формулу для спектральной плотности энергии равновесного излучения. Формула была получена Планком полуэмпирическим путем, позднее он доказал ее теоретически. День, в который Планк сделал доклад на заседании немецкого физического Общества, о теоретическом доказательстве своей формулы, считается днем рождения квантовой физики. Новшество идеи Планка состояло в том, что излучение и поглощение света происходит порциями, квантами света (квантами энергии). При выводе своей формулы Планк пользовался понятием гармонического осциллятора, понимая под ним не только частицу, которая совершает гармонические колебания, но и, например, стоячую волну, определенной частоты в полости тела, которое принимают как модель абсолютно черного тела. И при этом Планк считал, что энергия осциллятора с собственной частотой $\nu $ может принимать дискретные значения, которые отличаются от элементарной порции энергии (кванта) на целое число. Энергия кванта равна:

где $h=6,625\cdot <10>^<-34>Дж\cdot с$ — постоянная Планка (квант действия). Средняя энергия радиационного осциллятора получилась у Планка равной:

Формула, которую получил Планк для спектральной испускательной способности черного тела, имеет вид:

Другой вид формулы Планка получаю, если записывают ее через длину волны ($\lambda $):

Формула Планка, записанная через циклическую частоту ($\omega $) примет вид:

Формула Планка полностью описывает излучение абсолютно черного тела и расчеты, которые проводятся с ее использованием, совпадают с экспериментальными данными для любых частот. В этой формуле, как частный случай, содержится формула Рэлея — Джинса (при $h\nu \ll kT$). В области больших частот (при $h\nu \gg kT$) формула Планка переходит в выражение:

Закон смещения Вина и закон Стефана-Больцмана

Из формулы Планка следуют закон смещения Вина и закон Стефана — Больцмана. Количественное значение постоянной Планка можно найти, зная из эксперимента величины постоянных: k (постоянная Больцмана), $\sigma$ (постоянная Стефана — Больцмана) и скорости света в вакууме (с):

Постоянную Планка можно выразить через постоянную Вина.

Готовые работы на аналогичную тему

Задание: Используя формулу Планка, получите закон Стефана — Больцмана для интегральной излучательной способности абсолютно черного тела.

Энергетическую светимость абсолютно черного тела определим, как:

Используем формулу Планка для излучательной способности абсолютно черного тела:

Подставим (1.2) в (1.1), получим интеграл:

Проведем замену переменных, подставим $x=\frac\to \nu =\frac,\ \to d\nu =\frac$, тогда интеграл в (1.3) преобразуется к виду:

Разложим знаменатель интеграла из (1.4) в ряд:

Так, получаем интеграл в выражении (1.4) равен:

В таком случае из (1.4) получим:

Рассчитаем величину $\sigma$, которую мы получили, зная все составляющие ее формулу постоянные:

Таким образом, мы получили закон Стефана Больцмана:

Задание: Используя формулу Планка, получите формулу Рэлея Джинса.

Формула Планка переходит в формулу Рэлея — Джинса в области низких частот. Это значит, что $\hbar \omega \ll kT.$

Запишем формулу Планка через циклическую частоту:

По условию мы имеем, что $\hbar \omega \ll kT$, следовательно, $x$ стремится к нулю. Около нуля мы можем экспоненциальную функцию разложить в ряд: $=1+x+\frac<2>+\dots +\approx 1+x$. В таком случае $-1=1+x-1=x$. В таком случае уравнение (2.1) запишем в виде (от x перейдем назад к $\frac<\hbar \omega >$):

Таким образом, мы получили, что:

это формула Рэлея — Джинса, что и требовалось получить.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 01 12 2021

ПЛА́НКА ЗАКО́Н ИЗЛУЧЕ́НИЯ

  • В книжной версии

    Том 26. Москва, 2014, стр. 353

    Скопировать библиографическую ссылку:

    ПЛА́НКА ЗАКО́Н ИЗЛУЧЕ́НИЯ, опи­сы­ва­ет спек­траль­ное рас­пре­де­ле­ние энер­гии элек­тро­маг­нит­но­го из­лу­че­ния, на­хо­дя­ще­го­ся в те­п­ло­вом рав­но­ве­сии с ве­ще­ст­вом при за­дан­ной тем­пе­ра­ту­ре. Идеа­ли­зи­ро­ван­ной мо­де­лью рав­но­вес­но­го из­лу­че­ния слу­жит элек­тро­маг­нит­ное по­ле внут­ри по­лос­ти, рас­по­ло­жен­ной в на­гре­том ве­ще­ст­ве, при ус­ло­вии, что стен­ки ве­ще­ст­ва не­про­зрач­ны для из­лу­че­ния. Спектр та­ко­го рав­но­вес­но­го из­лу­че­ния на­зы­ва­ют спек­тром из­лу­че­ния аб­со­лют­но чёр­но­го те­ла . Объ­ём­ная плот­ность энер­гии из­лу­че­ния $u_ω$ , при­хо­дя­щей­ся на еди­нич­ный ин­тер­вал час­тот $ω$ , вы­ра­жа­ет­ся т. н. фор­му­лой План­ка: $$u_ω=\frac<ω^2><π^2 c^2>\cdot\frac<\hbar ω>-1>,$$ где $T$ – аб­со­лют­ная темп-ра, $k$ – по­сто­ян­ная Больц­ма­на, $c$ – ско­рость све­та, $\hbar$ – по­сто­ян­ная План­ка. Т. о., по спек­тру из­лу­че­ния аб­со­лют­но чёр­но­го те­ла мож­но оп­ре­де­лить его тер­мо­ди­на­мич. темп-ру. Эта фор­му­ла бы­ла вы­ве­де­на М. План­ком в 1900 в ре­зуль­та­те рас­смот­ре­ния ба­лан­са об­ме­на энер­ги­ей ме­ж­ду дву­мя ви­да­ми ос­цил­ля­то­ров: час­ти­ца­ми ве­ще­ст­ва, по­гло­щаю­щи­ми и ис­пус­каю­щи­ми из­лу­че­ние на час­то­те $ω$ , и ос­цил­ля­то­ра­ми, пред­став­ляю­щи­ми элек­тро­маг­нит­ное по­ле той же час­то­ты. Планк пред­по­ло­жил, что та­кие ос­цил­ля­то­ры мо­гут на­хо­дить­ся толь­ко в со­стоя­ни­ях с дис­крет­ной энер­ги­ей и об­ме­ни­ва­ют­ся ме­ж­ду со­бой кван­та­ми энер­гии ве­ли­чи­ной $Δ\mathscr =\hbar ω$ . Зна­че­ние ко­эф. про­пор­цио­наль­но­сти $\hbar$ ме­ж­ду час­то­той ос­цил­ля­то­ра и ве­ли­чи­ной кван­та энер­гии Планк ус­та­но­вил ис­хо­дя из экс­пе­рим. дан­ных: $\hbar$ = 1,054·10 –34 Дж·с. Пред­по­ло­же­ние о дис­крет­ном на­бо­ре воз­мож­ных зна­че­ний энер­гии ос­цил­ля­то­ров по­ля ( $0, \hbar ω, 2\hbar ω, 3\hbar ω, . $ ) ста­ло впо­след­ст­вии ос­но­ва­ни­ем для вве­де­ния по­ня­тия кван­та элек­тро­маг­нит­но­го из­лу­че­ния ( фо­то­на ).

    Постоянная Планка

    Постоянная Планка определяет границу между макромиром, где действуют законы механики Ньютона, и микромиром, где действуют законы квантовой механики.

    Макс Планк — один из основоположников квантовой механики — пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами (см. Уравнения Максвелла) и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах. Энергия, переносимая одним квантом, равна:

    где v — частота излучения, а hэлементарный квант действия, представляющий собой новую универсальную константу, получившую вскоре название постоянная Планка. Планк же первым и рассчитал ее значение на основе экспериментальных данных h = 6,548 × 10 –34 Дж·с (в системе СИ); по современным данным h = 6,626 × 10 –34 Дж·с. Соответственно, любой атом может излучать широкий спектр связанных между собой дискретных частот, который зависит от орбит электронов в составе атома. Вскоре Нильс Бор создаст стройную, хотя и упрощенную модель атома Бора, согласующуюся с распределением Планка.

    Опубликовав свои результаты в конце 1900 года, сам Планк — и это видно из его публикаций — сначала не верил в то, что кванты — физическая реальность, а не удобная математическая модель. Однако, когда пять лет спустя Альберт Эйнштейн опубликовал статью, объясняющую фотоэлектрический эффект на основе квантования энергии излучения, в научных кругах формулу Планка стали воспринимать уже не как теоретическую игру, а как описание реального физического явления на субатомном уровне, доказывающее квантовую природу энергии.

    Постоянная Планка фигурирует во всех уравнениях и формулах квантовой механики. Она, в частности, определяет масштабы, начиная с которых вступает в силу принцип неопределенности Гейзенберга. Грубо говоря, постоянная Планка указывает нам нижний предел пространственных величин, после которого нельзя не принимать во внимание квантовые эффекты. Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания.


    источники:

    http://bigenc.ru/physics/text/3143472

    http://elementy.ru/trefil/21193/Postoyannaya_Planka