Уравнение плоскости через начало координат перпендикулярно прямой

Уравнение плоскости, проходящей через данную точку и перпендикулярной данной прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и перпендикуляной данной прямой. Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную точку и перпендикулярной данной прямой − теория, примеры и решения

.(1)

Построить уравнение плоскости α, проходящей через точку M0 и перпендинулярной прямой L.

Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:

A(xx0)+B(yy0)+C(zz0)=0.(2)

Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку прямая L и плоскость α перпендикулярны друг другу, следовательно нормальный вектор плоскостти и направляющий вектор прямой должны быть коллинеарны (Рис.1). Тогда вместо координат нормального вектора плоскости нужно подставить координаты направляющего вектора прямой L. Получим следующее уравнение плоскости:

m(xx0)+p(yy0)+l(zz0)=0.(3)

Упростим уравнение (3):

mx+py+lz+D=0,(4)

Таким образом уравнение (4) определяет плоскость, проходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1).

Ответ. Уравнение плоскости прпоходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1) имеет вид (4).

Пример 1. Найти уравнение плоскости α, проходящую через точку M0(3, −1, 2) и перпендикулярной прямой L:

(7)

Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).

Направляющий вектор прямой L имеет следующий вид: :

Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (2) примет следующий вид:

m(xx0)+p(yy0)+l(zz0)=0.(8)

Подставляя координаты точки M0 и направляющего вектора q в (8), получим:

(9)

Упростим уравнение (9):

2x+5y+4z−9=0.(10)

Ответ: Уравнение плоскости, проходящей через точку M0(3, −1, 2) и перпендикулярной прямой (7) имеет вид (10).

Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и перпендикулярной прямой L, заданной параметрическим уравнением:

(11)

Решение. Приведем параметрическое уравнение (11) к каноническому виду:

(11′)

Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:

A(xx0)+B(yy0)+C(zz0)=0.(12)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (12) примет следующий вид:

m(xx0)+p(yy0)+l(zz0)=0.(13)

Подставляя координаты точки M0 и направляющего вектора q в (13), получим:

Упростим уравнение (13):

−5x+3y+11z+77=0.(14)

Ответ. Уравнение плоскости, проходящей через точку M0(4, 3, −6) и перпендикулярной прямой (11) имеет вид (14).

Задача 55893 Составить уравнение плоскости.

Условие

Составить уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой пересечения плоскости x-2y+4z-3=0 с плоскостью 0xz.

Решение

Находим прямую пересечения плоскости x–2y+4z–3=0 с плоскостью 0xz.

Решаем систему:
[m]\left\<\begin
x-2y+4z-3=0\\ y=0\end\right.[/m]
⇒ получаем прямую, заданную как линия пересечения двух плоскостей.

Напишем ее каноническое уравнение .

Для этого подставим y=0 в первое уравнение

и запишем первое уравнение как пропорцию

Получили каноническое уравнение прямой.

Направляющий вектор имеет координаты

Этот направляющий вектор прямой становится нормальеым вектором плоскости, перпендикулярной прямой.

Значит надо написать уравнение плоскости, проходящей через точку (0;0;0)
с нормальным вектором (4:0;-1)

О т в е т. 4х-z=0

Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

В этой статье мы поговорим о том, как составляется уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Сначала разберем принцип нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, после чего подробно разберем решения характерных примеров и задач.

Навигация по странице.

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.

Поставим перед собой следующую задачу.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , прямая a и требуется написать уравнение плоскости , проходящей через точку М1 перпендикулярно к прямой a .

Сначала вспомним один важный факт.

На уроках геометрии в средней школе доказывается теорема: через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к данной прямой (доказательство этой теоремы Вы можете найти в учебнике геометрии за 10 — 11 классы, указанном в списке литературы в конце статьи).

Теперь покажем, как находится уравнение этой единственной плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Мы можем написать общее уравнение плоскости, если нам известны координаты точки, лежащей в этой плоскости, и координаты нормального вектора плоскости.

В условии задачи нам даны координаты x1 , y1 , z1 точки М1 , через которую проходит плоскость . Тогда, если мы найдем координаты нормального вектора плоскости , то мы сможем составить требуемое уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Любой направляющий вектор прямой a представляет собой нормальный вектор плоскости , так как он ненулевой и лежит на прямой a , перпендикулярной к плоскости . Таким образом, нахождение координат нормального вектора плоскости сводится к нахождению координат направляющего вектора прямой a .

В свою очередь, координаты направляющего вектора прямой a могут определяться различными способами, зависящими от способа задания прямой a в условии задачи. Например, если прямую a в прямоугольной системе координат задают канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , то направляющий вектор этой прямой имеет координаты ax , ay и az ; если же прямая a проходит через две точки и , то координаты ее направляющего вектора определяются как .

Итак, получаем алгоритм для нахождения уравнения плоскости , проходящей через заданную точку перпендикулярно к заданной прямой a :

  • находим координаты направляющего вектора прямой a ();
  • принимаем координаты направляющего вектора прямой a как соответствующие координаты нормального вектора плоскости (, где );
  • записываем уравнение плоскости, проходящей через точку и имеющей нормальный вектор , в виде — это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.

Из найденного общего уравнения плоскости вида можно, при необходимости, получить уравнение плоскости в отрезках и нормальное уравнение плоскости.

Примеры составления уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Рассмотрим решения нескольких примеров, в которых находится уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.


источники:

http://reshimvse.com/zadacha.php?id=55893

http://www.cleverstudents.ru/line_and_plane/plane_passes_through_point_perpendicular_to_line.html