Уравнение плоскости геометрия 11 класс

Уравнение плоскости
презентация к уроку по геометрии (11 класс) по теме

Презентация «Уравнение плоскости» 11 класс

Скачать:

ВложениеРазмер
uravnenie_ploskosti_po_trem_tochkam.ppt821 КБ

Предварительный просмотр:

Подписи к слайдам:

Уравнение плоскости, проходящей через три точки Задачи ЕГЭ (С2)

Уравнение плоскости Ах + Ву + С z + D = 0, где А, В, С , D – числовые коэффициенты

Особые случаи уравнения: D = 0, Ax+By+Cz = 0 плоскость проходит через начало координат . А = 0; Ву + Cz +D = 0 плоскость параллельна оси Ох В = 0; Ах + Cz +D = 0 плоскость параллельна оси Оу C = 0, Ax+By+D = 0 плоскость параллельна оси Oz.

Особые случаи уравнения: А = В = 0, Сz + D = 0 плоскость параллельна плоскости Оху А = С = 0, Ву + D = 0 плоскость параллельна плоскости Охz B = C = 0, Ax + D = 0 плоскость параллельна плоскости Oyz.

Особые случаи уравнения: C = D = 0, Ax +By = 0 плоскость проходит через ось Oz. Уравнения координатных плоскостей: x = 0, плоскость О yz y = 0, плоскость О xz z = 0 , плоскость О xy

Плоскость не проходит через начало координат, не параллельна координатным осям

Точки пересечения с осями координат с осью Ох: (- D/A; 0; 0) с осью О y : ( 0; -D/B; 0) с осью О z : ( 0; 0; -D/C)

Алгоритм составления уравнения плоскости, проходящей через три точки М( x¹, y¹, z¹), N(x², y², z²), K(x³, y³, z³) Подставить координаты точек в уравнение плоскости. Получится система трех уравнений с четырьмя переменными .

Замечание Если плоскость проходит через начало координат, положить D = 0 , если не проходит, то D = 1

Задача В правильной четырехугольной призме ABCDA¹B¹C¹D¹ со стороной основания 12 и высотой 21 на ребре АА ¹ взята точка М так, АМ = 8, на ребре ВВ ¹ взята точка К так, что В ¹ К равно 8. Написать уравнение плоскости D¹ МК.

Запишем координаты точек М(0, 0, 13) К(12, 0, 8) D¹(0, 12, 0)

Подставим в систему уравнений

Умножим обе части уравнения на -156 Уравнение плоскости D¹ МК 5 x + 13y + 12z – 156 = 0

Задача 1 В правильной четырехугольной призме ABCDA¹B¹C¹D¹ сторона основания равна 2, и диагональ боковой грани равна √10. Написать уравнение плоскостей АВ ¹ С и плоскости основания призмы.

Задача 2 В правильной шестиугольной призме ABCDEFA¹B¹C¹D¹E¹F¹ сторона основания равна 4 , и диагональ боковой грани равна 5 . Написать уравнение плоскостей А ¹ В ¹E и плоскости основания призмы.

Уравнение плоскости, виды уравнения плоскости

В предыдущем разделе, посвященном плоскости в пространстве, мы рассмотрели вопрос с позиции геометрии. Теперь же перейдем к описанию плоскости с помощью уравнений. Взгляд на плоскость со стороны алгебры предполагает рассмотрение основных видов уравнения плоскости в прямоугольной системе координат O х у z трехмерного пространства.

Определение уравнения плоскости

Плоскость – это геометрическая фигура, состоящая из отдельных точек. Каждой точке в трехмерном пространстве соответствуют координаты, которые задаются тремя числами. Уравнение плоскости устанавливает зависимость между координатами всех точек.

Уравнение плоскости в прямоугольной системе координат 0хуz имеет вид уравнения с тремя переменными х , у и z . Удовлетворяют уравнению координаты любой точки, лежащей в пределах заданной плоскости, не удовлетворяют координаты любых других точек, которые лежат вне заданной плоскости.

Подстановка в уравнение плоскости координат точки данной плоскости, обращает уравнение в тождество. При подстановке координат точки, лежащей вне плоскости, уравнение превращается в неверное равенство.

Уравнение плоскости может иметь несколько видов. В зависимости от специфики решаемых задач уравнение плоскости может быть записано по-разному.

Общее уравнение плоскости

Сформулируем теорему, а затем запишем уравнение плоскости.

Всякая плоскость в прямоугольной системе координат O x y z в трехмерном пространстве может быть задана уравнением вида A x + B y + C z + D = 0 , где А , В , С и D – некоторые действительные числа, которые одновременно не равны нулю. Всякое уравнение, имеющее вид A x + B y + C z + D = 0 , определяет плоскость в трехмерном пространстве

Уравнение, имеющее вид A x + B y + C z + D = 0 носит название общего уравнения плоскости. Если не придавать числам А , В , С и D конкретных значений, то мы получаем уравнение плоскости в общем виде.

Важно понимать, что уравнение λ · A x + λ · B y + λ · C z + λ · D = 0 , будет точно так же определять плоскость. В уравнении λ — это некоторое отличное от нуля действительное число. Это значит, что равенства A x + B y + C z + D = 0 и λ · A x + λ · B y + λ · C z + λ · D = 0 равнозначны.

Общим уравнениям плоскости x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 удовлетворяют координаты одних и тех же точек, расположенных в трехмерном пространстве. Это значит, что они задают одну и ту же плоскость.

Дадим пояснения к рассмотренной выше теореме. Плоскость и ее уравнение неразделимы, так как каждому уравнению A x + B y + C z + D = 0 соответствует плоскость в заданной прямоугольной системе координат, а каждой плоскости, расположенной в трехмерном пространстве, соответствует ее уравнение вида A x + B y + C z + D = 0 .

Уравнение плоскости A x + B y + C z + D = 0 может быть полным и неполным. Все коэффициенты А , B , С и D в полном уравнении отличны от нуля. В противном случае, общее уравнение плоскости считается неполным.

Плоскости, которые задаются неполными уравнениями, могут быть параллельны координатным осям, проходить через оси координат, совпадать с координатными плоскостями или располагаться параллельно им, проходить через начало координат.

Рассмотрим положение в пространстве плоскости, заданной уравнением 4 · y — 5 · z + 1 = 0 .

Она параллельна оси абсцисс и располагается перпендикулярно по отношению к плоскости O y z . Уравнение z = 0 определяет координатную плоскость O y z , а общее уравнение плоскости вида 3 · x — y + 2 · z = 0 соответствует плоскости, которая проходит через начало координат.

Важное уточнение: коэффициенты А , В и С в общем уравнении плоскости представляют собой координаты нормального вектора плоскости.

Когда говорят об уравнении плоскости, то подразумевают общее уравнение плоскости. Все виды уравнений плоскости, которые мы разберем в следующем разделе статьи, получают из общего уравнения плоскости.

Нормальное уравнение плоскости

Нормальное уравнение плоскости – это общее уравнение плоскости вида A x + B y + C z + D = 0 , которое удовлетворяет следующим условиям: длина вектора n → = ( A , B , C ) равна единице, т.е. n → = A 2 + B 2 + C 2 = 1 , а D ≤ 0 .

Также запись нормального уравнения плоскости может иметь следующий вид cos α · x + cos β · y + cos γ · z — p = 0 , где p – это неотрицательное число, которое равно расстоянию от начала координат до плоскости, а cos α , cos β , cos γ — это направляющие косинусы нормального вектора данной плоскости единичной длины.

n → = ( cos α , cos β , cos γ ) , n → = cos 2 α + cos 2 β + cos 2 γ = 1

То есть, согласно нормальному уравнению плоскости, плоскость в прямоугольной системе координат O х у z удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости n → = ( cos α , cos β , cos γ ) . Если p равно нулю, то плоскость проходит через начало координат.

Плоскость задана общим уравнением плоскости вида — 1 4 · x — 3 4 · y + 6 4 · z — 7 = 0 . D = — 7 ≤ 0 , нормальный вектор этой плоскости n → = — 1 4 , — 3 4 , 6 4 имеет длину, равную единице, так как n → = — 1 4 2 + — 3 4 2 + 6 4 = 1 . Соответственно, это общее уравнение плоскости является нормальным уравнением плоскости.

Для более детального изучения нормального уравнения плоскости мы рекомендуем перейти в соответствующий раздел. В теме приведены разборы задач и характерные примеры, а также способы приведения общего уравнения плоскости к нормальному виду.

Уравнение плоскости в отрезках

Плоскость отсекает на координатных осях O х , O у и O z отрезки определенной длины. Длины отрезков задаются отличными от нуля действительными числами a , b и с . Уравнение плоскости в отрезках имеет вид x a + y b + z c = 1 . Знак чисел а , b и с показывает, в каком направлении от нулевого значения следует откладывать отрезки на координатных осях.

Построим в прямоугольной системе координат плоскость, которая задана уравнением формулы плоскости в отрезках x — 5 + y — 4 + z 4 = 1 .

Точки удалены от начала координат в отрицательном направлении на 5 единиц по оси абсцисс, на 4 единицы в отрицательном направлении по оси ординат и на 4 единицы в положительном направлении по оси аппликат. Отмечаем точки и соединяем их прямыми линиями.

Плоскость полученного треугольника является плоскостью, соответствующей уравнению плоскости в отрезках, имеющего вид x — 5 + y — 4 + z 4 = 1 .

Более подробно информация об уравнении плоскости в отрезках, приведении уравнения плоскости в отрезках к общему уравнению плоскости размещена в отдельной статье. Там же приведен ряд решений задач и примеров по теме.

Презентация «Уравнение плоскости» 10-11 класс

Код для использования на сайте:

Скопируйте этот код и вставьте себе на сайт

Для скачивания поделитесь материалом в соцсетях

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

Уравнение плоскости Преподаватель математики Семяшкина Ирина Васильевна ГПОУ «Ижемкий политехнический техникум» Цель:

  • познакомить учащихся с понятием уравнения плоскости и её особыми случаями задания;
  • Выработать практические навыки по изучаемой теме при решении задач.

Проверка готовности.

Какой алфавит используют для обозначения плоскости?

Сколько точек достаточно, чтобы обозначить плоскость?

Как обозначают плоскость?

Как могут располагаться плоскости по отношению друг к другу?

Параллельно, пересекаться, совпадать

Общее уравнение плоскости Ax+By+Cz+D=0

где А, В, С, D – числовые коэффициенты

Уравнения координатных плоскостей x = 0, плоскость Оyz y = 0, плоскость Оxz z = 0, плоскость Оxy Особые случаи уравнения:

  • D = 0  Ax+By+Cz = 0 плоскость проходит через начало координат.
  • А = 0  Ву + Cz +D = 0 плоскость параллельна оси Ох.
  • В = 0  Ах + Cz +D = 0 плоскость параллельна оси Оу.
  • C = 0  Ax+By+D = 0 плоскость параллельна оси Oz.

Особые случаи уравнения:

  • А = В = 0  Сz + D = 0 плоскость параллельна плоскости Оху.
  • А = С = 0  Ву + D = 0 плоскость параллельна плоскости Охz.
  • В = C= 0  Ах+D = 0 плоскость параллельна плоскости Оуz.

Особые случаи уравнения:

  • A = D = 0  By+Cz = 0 плоскость проходит через ось Ox.
  • B = D = 0  Ax + Cz = 0 плоскость параллельна оси Оy.
  • C = D = 0  Ах + By = 0 плоскость параллельна оси Оz.

Две плоскости в пространстве:

  • совпадают, если существует такое число k, что
  • параллельны, если существует такое число k, что
  • В остальных случаях плоскости пересекаются.

Алгоритм составления уравнения плоскости, проходящей через точку перпендикулярно данному вектору Итак, пусть произвольная плоскость в пространстве. Всякий перпендикулярный ей ненулевой вектор называется вектором нормали к этой плоскости.

Алгоритм составления уравнения плоскости, проходящей через точку перпендикулярно данному вектору Если известна какая-нибудь точка плоскости M0 и какой-нибудь вектор нормали к ней, то через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору. Общее уравнение плоскости будет иметь вид:

Чтобы получить уравнение плоскости, имеющее приведённый вид, возьмём на плоскости произвольную точку M(x;y;z). Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис), а для этого, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. Чтобы получить уравнение плоскости, имеющее приведённый вид, возьмём на плоскости произвольную точку M(x;y;z). Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис), а для этого, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. Вектор задан по условию. Координаты вектора найдём по формуле : Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору . Используем формулу A(x-x0)+B(y-y0)+C(z-z0)=0

Ответ: 5x + y — 4z — 3=0

Уравнение плоскости, проходящей через три точки После раскрытия определителя это уравнение становится уравнением общего вида.

Пусть даны три различные точки, не лежащие на одной прямой.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости:

Пример 2. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой: ; и .

При равенстве нулю свободного коэффициента D уравнения общего уравнения плоскости уравнение определяет

  • Плоскость, параллельную координатной плоскости Oxy
  • Плоскость, проходящую через начало координат
  • Полуплоскость
  • Линию пересечения плоскостей


источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-ploskosti-vidy-uravnenija-ploskosti/

http://uchitelya.com/geometriya/124225-prezentaciya-uravnenie-ploskosti-10-11-klass.html