Уравнение плоскости проходящей через две точки параллельно вектору

Задача 29243 5.2.8) Написать уравнение плоскости.

Условие

5.2.8) Написать уравнение плоскости, проходящей через точки M1(2; 0; — 1), M2(-3; 1; 3) параллельно вектору s = (1; 2; -1).

Решение

vector=(-3-2;1;3-(-1))=(-5;1;4) и vector = (1; 2; –1) коллинеарны.

Нормальный вектор плоскости — вектор, ортогонален векторам
vector и vector

Находим векторное произведение
vector × vector
Составляем определитель третьего порядка
в первой строке базисные векторы
vectorvectorvector
во второй координаты вектора vector=(-5;1;4)
в третьей координаты вектора
vector=(1;2;-1)

Получим:
=vector(1*(-1)-2*4)- vector*(-5*(-1)-1*4)+vector*(-5*2-1*1)=
=-9vector — vector -9vector

Уравнение плоскости, проходящей через точку M_(o)(x_(o);y_(o);z_(o)) с нормальным вектором vector=(A;B;C)
имеет вид
A*(x-x_(o))+B*(y-y_(o))+C*(z-z_(o))=0

Уравнение плоскости, проходящей через две точки компланарно данному вектору

Согласно уравнению плоскости, проходящей через данную точку компланарно двум неколлинеарным векторам, уравнение плоскости, проходящей через M1(x1, y1, z1) и M2(x2, y2, z2) компланарно вектору a=1, a2, a3>, который неколлинеарен вектору M1M2=2-x1, y2-y1, z2-z1> имеет вид:

x-x1y-y1z-z1
x2-x1y2-y1z2-z1
a1a2a3

=0

Всё для учебы » Аналитическая геометрия » Уравнение плоскости, проходящей через две точки компланарно данному вектору

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home

Плоскость в пространстве, всевозможные уравнения, расстояние от точки до плоскости.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения плоскости:

1) $Ax+By+Cz+D=0 -$ общее уравнение плоскости $P,$ где $\overline=(A, B, C) -$ нормальный вектор плоскости $P.$

2) $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$ уравнение плоскости $P,$ которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $\overline=(A, B, C).$ Вектор $\overline N$ называется нормальным вектором плоскости.

4) $\beginx-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&x_2-x_1&x_3-x_1\end=0 — $ уравнение плоскости, которая проходит через три точки $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ и $C(x_3, y_3, z_3).$

5) $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0 -$ нормальное уравнение плоскости, где $\cos\alpha, \cos\beta$ и $\cos\gamma -$ направляющие косинусы нормального вектора $\overline,$ направленного из начала координат в сторону плоскости, а $p>0 -$ расстояние от начала координат до плоскости.

Общее уравнение плоскости приводится к нормальному, путем умножения на нормирующий множитель $\mu=-\frac<\sqrt>.$

Расстояние от точки $M(x_0, y_0, z_0)$ до плоскости $P: Ax+By+Cz+D=0$ вычисляется по формуле $$d=\left|\frac<\sqrt>\right|.$$

Примеры:

2.180.

а) Заданы плоскость $P: -2x+y-z+1=0$ и точка $M(1, 1, 1).$ Написать уравнение плоскости $P’,$ проходящей через точку $M$ параллельно плоскости $P$ и вычислить расстояние $\rho(P, P’).$

Решение.

Так как п.лоскости $P$ и $P’$ параллельны, то нормальный вектор для плоскости $P$ будет также нормальным вектором для плоскости $P’.$ Из уравнения плоскости получаем $\overline=(-2, 1, -1).$

Далее запишем уравнение плоскости по формуле ( 2): $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$ уравнение плоскости, которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $\overline=(A, B, C).$

Ответ: $-2x+y-z+2=0.$

2.181.

а) Написать уравнение плоскости $P’,$ проходящей через заданные точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ перпендикулярно заданной плоскости $P: -x+y-1=0.$

Решение.

Из уравнения плоскости $P,$ находим ее нормальный вектор $\overline=(-1, 1, 0).$ Плоскость, перпендикулярная плоскости $P,$ параллельна ее нормальному вектору. Отсюда следует, что можно выбрать точку $M_3(x, y, z)\in P’$ такую, что что $\overline||\overline.$

Поскольку $z_N=0,$ то есть вектор $N\in XoY,$ то $z_=0.$

Мы нашли точку $M_3=(2, 1, 0).$

Так как точка $M_1\in P’,$ то и $M_3\in P’.$ Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(2, 1, 0).$

$(x-1)(-1)0+(-1)z+(y-2)-(-1)z-(-1)(x-1)-(y-2)0=0\Rightarrow$ $\Rightarrow-z+y-2+z+x-1=0\Rightarrow x+y-3=0.$

2.182.

а) Написать уравнение плоскости $P,$ проходящей через точку $M(1, 1, 1)$ параллельно векторам $a_1(0, 1, 2)$ и $a_2(-1, 0, 1).$

Решение.

Поскольку вектор $[a_1, a_2]$ перпендикулярен плоскости векторов $a_1$ и $a_2$ (см. векторное произведение), то он будет также перпендикулярен искомой плоскости. То есть вектор $[a_1, a_2]$ является нормальным для плоскости $P.$ Найдем этот вектор:

Таким образом $\overline=[a_1, a_2]=(1, -2, 1).$

Теперь можно найти уравнение плоскости $P,$ по формуле (2), как плоскости, проходящей через точку $M(1, 1, 1)$ перпендикулярно вектору $\overline N=(1, -2, 1):$

Ответ: $x-2y+z=0.$

2.183.

а) Написать уравнение плоскости $P,$ проходящей через точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ параллельно вектору $a=(3, 0, 1).$

Решение.

Поскольку вектор $a$ параллелен плоскости $P,$ то для всякого вектора $\overline,$ параллельного вектору $a,$ точка $M_3\in P.$

Пусть $M_3=(x, y, z).$ Тогда $\overline=(x-1, y-2, z).$ Так как $\overline||a,$ то $\frac>=\frac>=\frac>.$ $y_a=0,$ то есть вектор $a\in XoZ$ и всякий параллельный ему вектор так же будет принадлежать этой плоскости. Таким образом, $y_=y-2=0\Rightarrow y=2.$

Из условия параллельности векторов имеем $\frac<3>=\frac<1>.$ Пусть $x=4,$ тогда $z=1.$

Мы получили точку $M_3=(4, 2, 1).$

Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(4, 2, 1).$

$(x-1)(-1)1+1\cdot z\cdot 0+(y-2)3-3(-1)z-0\cdot 1\cdot(x-1)-1(y-2)1=0\Rightarrow$

$\Rightarrow -x+1+3y-6+3z-y+2=0\Rightarrow -x+2y+3z-3=0.$

2.184.

а) Написать уравнение плоскости, проходящей через три заданные точки $M_1(1, 2,0),$ $M_2(2, 1, 1)$ и $M_3(3, 0, 1).$

Решение.

Воспользуемся формулой (4):

$\Rightarrow -x+1+-2z+2y-4+2z+2x-2-y+2=0\Rightarrow x+y-3=0.$


источники:

http://uchim.org/algebra-i-geometrija/uravnenie-ploskosti-prohodjasshej-cherez-dve-tochki

http://mathportal.net/index.php/component/content/article/87-visshaya-matematika/analiticheskaya-geometriya/138-ploskost-v-prostranstve-vsevozmozhnye-uravneniya-rasstoyanie-ot-tochki-do-ploskosti