Уравнение плоскости проходящей через параллельные прямые онлайн калькулятор

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:

.(1)
.(2)

Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).

Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.

Уравнение плоскости можно записать формулой

Ax+By+Cz+D=0.(3)

и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:

Ax1+By1+Cz1+D=0.(4)

Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am1+Bp1+Cl1=0(5)

Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am2+Bp2+Cl2=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:

(8)

паралленьно другой прямой L2 :

(9)

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= <1, 1, −3>прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

(10)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(11)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(12)
(13)
(14)
(15)

Представим эти уравнения в матричном виде:

(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

(17)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= <−13/24,1/6,−1/8>то она может быть представлена формулой:

Ax+By+Cz+D=0(18)

Подставляя значения A,B,C,D в (17), получим:

(18)

Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:

13x−4y+3z−24=0(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:

(20)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= <5, −8, 3>прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

Ax1+By1+Cz1+D=0(22)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(23)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(24)
A(−2)+B·0+C·1+D=0,(25)
A·5+B(−8)+C·3=0,(26)
A·1+B·1+C·1=0,(27)

Представим эти уравнения в матричном виде:

(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

(29)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= <11/35,2/35,−13/35>то она может быть представлена формулой:

Ax+By+Cz+D=0(30)

Подставляя значения A,B,C,D в (30), получим:

(31)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:

11x+2y−13z+35=0(32)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Найти уравнение плоскости

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Составление уравнения плоскости

Данный онлайн-сервис поможет составить уравнение плоскости по трем координатам.

Между всеми плоскостями и линейными уравнениями первого порядка с координатами (x,y,z) существуют взаимно-однозначные соответствия: каждая плоскость описывается определённым уравнением и наоборот, каждое уравнение описывает плоскость, притом только одну.

Координаты трех точек, не лежащих на одной прямой:

$$ (x_1, \: y_1, \: z_1) \quad (x_2, \: y_2, \: z_2) \quad (x_3, \: y_3, \: z_3)$$

Изображение плоскости, построенной по трем заданным точкам:

Составим систему уравнений для плоскости, проходящей через три заданные точки:

$$ \begin A \cdot (x-x_1)+B \cdot (y-y_1)+C \cdot (z-z_1)=0 \\ A \cdot (x-x_2)+B \cdot (y-y_2)+C \cdot (z-z_2)=0 \\ A \cdot (x-x_3)+B \cdot (y-y_3)+C \cdot (z-z_3)=0 \end $$

В этой системе произвольная точка (x, y, z) удовлетворяет уравнению плоскости.
Определитель этой системы равен нулю:

$$ \begin x-x_1 & x-x_2 & x-x_3 \\ y-y_1 & y-y_2 & y-y_3 \\ z-z_1 & z-z_2 & z-z_3 \end = 0$$

  1. Дано три точки с координатами M(1;-2;0), K(2;0;-1), N(0;-1;2). Составьте уравнение плоскости, проходящей через эти точки.
    Посмотреть решение

Общий вид уравнения плоскости A·x+B·y+C·z+D=0, чтобы его составить, необходимо найти коэффициенты A, B, C, D.

Составим определитель, который поможет их найти:
$$ \begin x-x1 && x-x2 && x-x3 \\ y-y1 && y-y2 && y-y3 \\ z-z1 && z-z2 && z-z3 \end = 0 $$

Учитывая, что x1, x2, x3, y1, y2, y3, z1, z2, z3 – координаты точек M, K, N, подставим:

$$ \begin x-1 && x-2 && x-0 \\ y+2 && y-0 && y+1 \\ z-0 && z+1 && z-2 \end = 0$$

Решая определитель, получим: 5x-y+3z+7=0.

Ответ:

Поместим призму в систему координат таким образом, чтобы ее начало находилось в точке А1. Тогда координаты точек, определяющих положение плоскости в пространстве, будут:

Составим определитель, позволяющий найти уравнение плоскости:

$$ \begin x-0 && x-12 && x-0 \\ y-12 && y-0 && y-13 \\ z-0 && z-0 && z-8 \end = 0$$

Расчет определителя дает результат:

$$ 5x+13y+12z-156=0 $$ — это и есть уравнение плоскости.


источники:

http://ru.onlinemschool.com/math/assistance/cartesian_coordinate/plane/

http://algebra24.ru/uravnenie-ploskosti