Уравнение плоскости проходящей через прямую параллельно вектору

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:

.(1)
.(2)

Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).

Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.

Уравнение плоскости можно записать формулой

Ax+By+Cz+D=0.(3)

и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:

Ax1+By1+Cz1+D=0.(4)

Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am1+Bp1+Cl1=0(5)

Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am2+Bp2+Cl2=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:

(8)

паралленьно другой прямой L2 :

(9)

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= <1, 1, −3>прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

(10)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(11)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(12)
(13)
(14)
(15)

Представим эти уравнения в матричном виде:

(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

(17)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= <−13/24,1/6,−1/8>то она может быть представлена формулой:

Ax+By+Cz+D=0(18)

Подставляя значения A,B,C,D в (17), получим:

(18)

Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:

13x−4y+3z−24=0(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:

(20)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= <5, −8, 3>прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

Ax1+By1+Cz1+D=0(22)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

(23)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

(24)
A(−2)+B·0+C·1+D=0,(25)
A·5+B(−8)+C·3=0,(26)
A·1+B·1+C·1=0,(27)

Представим эти уравнения в матричном виде:

(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

(29)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= <11/35,2/35,−13/35>то она может быть представлена формулой:

Ax+By+Cz+D=0(30)

Подставляя значения A,B,C,D в (30), получим:

(31)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:

11x+2y−13z+35=0(32)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).

Уравнение плоскости, проходящей через прямую и параллельной другой прямой

Если даны не параллельные прямые L1 и L2, тогда плоскость, проходящая через прямую L1 и параллельная прямой L2 представляется уравнением:

Это и есть уравнение плоскости, проходящей через данную прямую и параллельной другой данной прямой.

х1, y1, z1 — координаты какой-либо точки прямой L1

ι 1, m1, n1 — направляющие коэффициенты прямой L1

ι 2, m2, n2 — направляющие коэффициенты прямой L2

4.2.10. Примеры решения задач по теме «Уравнение плоскости в пространстве»

Составить уравнение плоскости, проходящей через точки А=<5; -1; 3>,

Для того, чтобы составить уравнение плоскости, нужно знать координаты

Точки, лежащей в этой плоскости, и координаты нормали, то есть вектора, перпендикулярного плоскости.

Векторы АВ = (-3; 3; -3) и АС = (-6; 2; -2) параллельны данной плоскости, поэтому их векторное произведение или любой вектор, коллинеарный ему, является нормалью к плоскости.

Выберем в качестве нормали П = (0; 1; 1), а точкой <Х0; У0; Z0> будем считать точку В. Тогда уравнение плоскости имеет вид:

Составить канонические уравнения прямой

Для того, чтобы составить канонические или параметрические уравнения прямой в пространстве, нужно знать координаты какой-либо точки, лежащей на этой на этой прямой, и координаты направляющего вектора, то есть вектора, коллинеарного прямой.

Прямая является линией пересечения двух плоскостей, поэтому ее направляющий вектор А параллелен каждой из этих плоскостей и соответственно перпендикулярен нормалям П1 и П2 к данным плоскостям. В таком случае он коллинеарен векторному произведению [N1, N2].

Будем искать точку, лежащую на данной прямой, у которой одна из координат принимает выбранное нами значение; тогда остальные две координаты можно определить единственным образом из системы уравнений, задающей пересекающиеся плоскости. Выберем для удобства вычислений Z0 = 0, тогда для точки М=<Х0; У0; 0>

Теперь составим канонические уравнения данной прямой:

Ответ:

Составить уравнение плоскости, проходящей через прямую L:

Точка А= <-3,5,-1>принадлежит плоскости, соответственно вектор параллелен плоскости. Кроме того, поскольку данная прямая лежит в плоскости, ее направляющий вектор A = (2: 1: -1) параллелен плоскости. Следовательно, нормаль к плоскости коллинеарна векторному произведению этих векторов.

Поскольку прямая лежит в плоскости, ее направляющий вектор A = (2: 1: -1) параллелен плоскости. При T = 0 из уравнений прямой получаем:

Координаты точки А, принадлежащей прямой и соОтВетственно плоскости.

Тогда вектор АМ = (5; -8; 2) параллелен Плоскости. Следовательно, нормаль

П к плоскости коллинеарна векторному произведению [A, AM] = (-6; -9; — 21).

Выберем N = (2; 3; 7) и составим уравнение плоскости, проходящей через

Найти кратчайшее расстояние между прямыми

Координаты направляющих векторов данных прямых A1 = <3; 2; -2>и

A2 = <1; 1; 4>не пропорциональны, следовательно, А1 и А2 не коллинеарны, поэтому прямые либо пересекаются, либо скрещиваются.

Составьте уравнение плоскости A, проходящей через прямую L1 параллельно вектору А2. Если L1 и L2 пересекаются, то прямая L2 будет лежать в этой плоскости; если же L1 и L2 скрещиваются, то L2 параллельна плоскости A, и тогда расстояние между L1 и L2 (длина общего перпендикуляра) будет равно расстоянию от любой точки прямой L2 до плоскости A.

Координаты направляющих векторов данных прямых A1 = <3; 2; -2>и

A2 = <1; 1; 4>не пропорциональны, следовательно, А1 и А2 не коллинеарны, поэтому прямые либо пересекаются, либо скрещиваются.

Составим уравнение плоскости A, проходящей через прямую L1 параллельно вектору А2. Если L1 и L2 пересекаются, то прямая L2 будет лежать в этой плоскости (рис.9); если же L1 и L2 скрещиваются, то L2 параллельна плоскости A, и тогда расстояние между L1 и L2 (длина общего перпендикуляра) будет равно расстоянию от любой точки прямой L2 до плоскости A (рис.10).

[A1, A2] = (10; -14; 1) = N, точка А= <5; 0; -25>лежит на прямой L1, следова-тельно, она лежит и в плоскости A. Тогда уравнение плоскости A имеет вид:

Точка В= <1; 2; 13>принадлежит прямой L2. Проверим, лежит ли эта точка в плоскости A:

Тогда искомой величиной будет расстояние от В до A. Его можно найти, составив нормальное уравнение плоскости A:

Ответ: .

Найти точку, симметричную точке А(5; -10; 4) относительно плоскости

Искомая точка В лежит на прямой, проходящей через точку А перпендикулярно плоскости A так, что ОА = ОВ, где точка О – точка пересечения A с прямой АВ.

Искомая точка В лежит на прямой, проходящей через точку А перпендикулярно плоскости A так, что ОА = ОВ, где точка О – точка пересечения A с прямой АВ. Составим уравнения прямой АВ. Эта прямая перпендикулярна A, поэтому ее направляющим вектором можно считать нормаль к плоскости A: A = N = (1; -3; 1).

Параметрические уравнения прямой АВ имеют вид:

Точка О принадлежит и прямой АВ, и плоскости A, поэтому ее координаты должны удовлетворять и уравнениям прямой, и уравнению плоскости. Подставим в уравнение плоскости A параметрические выражения для X, Y, Z из уравнений прямой АВ:

T + 5 – 3(-3T – 10) + T + 4 – 6 = 0; 11T + 33 = 0; T = -3.

Итак, координаты точки О:

Поскольку точка О – середина отрезка АВ, то


источники:

http://www.matematicus.ru/vysshaya-matematika/analiticheskaya-geometriya-v-prostranstve/uravnenie-ploskosti-prohodyashhej-cherez-pryamuyu-i-parallelnoj-drugoj-pryamoj

http://matica.org.ua/metodichki-i-knigi-po-matematike/lineinaia-algebra-i-analiticheskaia-geometriia/4-2-10-primery-resheniia-zadach-po-teme-uravnenie-ploskosti-v-prostranstve