Уравнение плоской волны энергетические характеристики волны

Энергетические характеристики волны

Среда, в которой распространяется волна, обладает механической энергией, складывающейся из энергий колебательного движения всех ее частиц. Энергия одной частицы с массой m0 находится по формуле (1.21): Е0 = m0 Α 2 ω 2 /2. В единице объема среды содержится n = p/m0 частиц — плотность среды). Поэтому единица объема среды обладает энергией wр = nЕ0 = ρΑ 2 ω 2 /2.

Объемная плотность энергии (\¥р) — энергия колебательного движения частиц среды, содержащихся в единице ее объема:

где ρ — плотность среды, А — амплитуда колебаний частиц, ω — частота волны.

При распространении волны энергия, сообщаемая источником, переносится в удаленные области.

Для количественного описания переноса энергии вводят следующие величины.

Поток энергии (Ф) — величина, равная энергии, переносимой волной через данную поверхность за единицу времени:

Интенсивность волны или плотность потока энергии (I) — величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:

Можно показать, что интенсивность волны равна произведению скорости ее распространения на объемную плотность энергии

2.5. Некоторые специальные разновидности

Волн

1. Ударные волны. При распространении звуковых волн скорость колебания частиц не превышает нескольких см/с, т.е. она в сотни раз меньше скорости волны. При сильных возмущениях (взрыв, движение тел со сверхзвуковой скоростью, мощный электрических разряд) скорость колеблющихся частиц среды может стать сравнимой со скоростью звука. При этом возникает эффект, называемый ударной волной.

При взрыве нагретые до высоких температур продукты, обладающие большой плотностью, расширяются и сжимают тонкий слой окружающего воздуха.

Ударная волна — распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит скачкообразное возрастание давления, плотности и скорости движения вещества.

Ударная волна может обладать значительной энергией. Так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50 % всей энергии взрыва. Ударная волна, достигая объектов, способна вызвать разрушения.

2. Поверхностные волны. Наряду с объемными волнами в сплошных средах при наличии протяженных границ могут существовать волны, локализованные вблизи границ, которые играют роль волноводов. Таковы, в частности, поверхностные волны в жидкости и упругой среде, открытые английским физиком В. Стреттом (лордом Релеем) в 90-х годах 19 века. В идеальном случае волны Релея распространяются вдоль границы полупространства, экспоненциально затухая в поперечном направлении. В результате поверхностные волны локализуют энергию возмущений, созданных на поверхности, в сравнительно узком приповерхностном слое.

Поверхностные волны — волны, которые распространяются вдоль свободной поверхности тела или вдоль границы тела с другими средами и быстро затухают при удалении от границы.

Примером таких волн могут служить волны в земной коре (сейсмические волны). Глубина проникновения поверхностных волн составляет несколько длин волн. На глубине, равной длине волны λ, объемная плотность энергии волны составляет приблизительно 0,05 ее объемной плотности на поверхности. Амплитуда смещения быстро убывает при удалении от поверхности и на глубине нескольких длин волн практически исчезает.

3. Волны возбуждения в активных средах.

Активно возбудимая, или активная, среда — непрерывная среда, состоящая из большого числа элементов, каждый из которых обладает запасом энергии.

При этом каждый элемент может находиться в одном из трех состояний: 1 — возбуждение, 2 — рефрактерность (невозбудимость в течение определенного времени после возбуждения), 3 — покой. В возбуждение могут перейти элементы только из состояния покоя. Волны возбуждения в активных средах называют автоволнами. Автоволны — это самоподдерживающиеся волны в активной среде, сохраняющие свои характеристики постоянными за счет распределенных в среде источников энергии.

Характеристики автоволны — период, длина волны, скорость распространения, амплитуда и форма — в установившемся режиме зависят только от локальных свойств среды и не зависят от начальных условий. В табл. 2.2 представлено сходство и различие автоволн и обычных механических волн.

Автоволны можно сопоставить с распространением пожара в степи. Пламя распространяется по области с распределенными запасами энергии (по сухой траве). Каждый последующий элемент (сухая травинка) зажигается от предыдущего. И таким образом распространяется фронт волны возбуждения (пламя) по активной среде (сухой траве). При встрече двух очагов пожара пламя исчезает, так как исчерпаны запасы энергии — вся трава выгорела.

Описание процессов распространения автоволн в активных средах используется при изучении распространения потенциалов действия по нервным и мышечным волокнам.

Таблица 2.2.Сравнение автоволн и обычных механических волн

2.6. Эффект Доплера и его использование в медицине

Христиан Доплер (1803-1853) — австрийский физик, математик, астроном, директор первого в мире физического института.

Эффект Доплера состоит в изменении частоты колебаний, воспринимаемой наблюдателем, вследствие относительного движения источника колебаний и наблюдателя.

Эффект наблюдается в акустике и оптике.

Получим формулу, описывающую эффект Доплера, для случая, когда источник и приемник волны движутся относительно среды вдоль одной прямой со скоростями vИ и vП соответственно. Источник совершает гармонические колебания с частотой ν0 относительно своего равновесного положения. Волна, созданная этими колебаниями, распространяется в среде со скоростью v. Выясним, какую частоту колебаний зафиксирует в этом случаеприемник.

Возмущения, создаваемые колебаниями источника, распространяются в среде и достигают приемника. Рассмотрим одно полное колебание источника, которое начинается в момент времени t1 = 0

и заканчивается в момент t2 = T0 (T0 — период колебаний источника). Возмущения среды, созданные в эти моменты времени, достигают приемника в моменты t’1 и t’2 соответственно. При этом приемник фиксирует колебания с периодом и частотой:

Найдем моменты t’1 и t’2для случая, когда источник и приемник движутся навстречу друг другу, а начальное расстояние между ними равно S. В момент t2 = T0 это расстояние станет равным S — (vИ + vП)T0, (рис. 2.2).

Рис. 2.2.Взаимное расположение источника и приемника в моменты t1 и t2

Эта формула справедлива для случая, когда скорости vи и vпнаправлены навстречу друг другу. В общем случае при движении

источника и приемника вдоль одной прямой формула для эффекта Доплера принимает вид

Для источника скорость vИ берется со знаком «+», если он движется в направлении приемника, и со знаком «-» в противном случае. Для приемника — аналогично (рис. 2.3).

Рис. 2.3.Выбор знаков для скоростей источника и приемника волн

Рассмотрим один частный случай использования эффекта Доплера в медицине. Пусть генератор ультразвука совмещен с приемником в виде некоторой технической системы, которая неподвижна относительно среды. Генератор излучает ультразвук, имеющий частоту ν0, который распространяется в среде со скоростью v. Навстречу системе со скоростью vт движется некоторое тело. Сначала система выполняет рольисточника (vИ = 0), а тело — роль приемника (vTl = vТ). Затем волна отражается от объекта и фиксируется неподвижным приемным устройством. В этом случае vИ = vТ, а vп = 0.

Применив формулу (2.7) дважды, получим формулу для частоты, фиксируемой системой после отражения испущенного сигнала:

При приближении объекта к датчику частота отраженного сигналаувеличивается, а при удалении — уменьшается.

Измерив доплеровский сдвиг частоты, из формулы (2.8) можно найти скорость движения отражающего тела:

Знак «+» соответствует движению тела навстречу излучателю.

Эффект Доплера используется для определения скорости кровотока, скорости движения клапанов и стенок сердца (доплеровская эхокардиография) и других органов. Схема соответствующей установки для измерения скорости крови показана на рис. 2.4.

Рис. 2.4.Схема установки для измерения скорости крови: 1 — источник ультразвука, 2 — приемник ультразвука

Установка состоит из двух пьезокристаллов, один из которых служит для генерации ультразвуковых колебаний (обратный пьезоэффект), а второй — для приема ультразвука (прямой пьезоэффект), рассеянного кровью.

Пример. Определить скорость кровотока в артерии, если при встречном отражении ультразвука 0= 100 кГц = 100 000 Гц, v = 1500 м/с) от эритроцитов возникает доплеровский сдвиг частоты νД = 40 Гц.

Решение. По формуле (2.9) найдем:

v0 = vДv/2v0= 40x1500/(2x100 000) = 0,3 м/с.

Уравнение плоской волны энергетические характеристики волны

Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.

По физической природе различают:

упругие, звуковые, волны на поверхности жидкости

свет, радиоволны, излучения

По ориентации возмущений различают:

Смещение частиц происходит вдоль направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сжатии;

могут распространяться в любых средах.

Смещение частиц происходит поперек направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сдвиге;

могут распространяться только в твердых средах (и на границе двух сред).

Примеры: упругие волны в струне, волны на воде

По характеру зависимости от времени различают:

Упругие волны — механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.

Бегущие волны — волны, переносящие энергию в пространстве.

По форме волновой поверхности: плоская, сферическая, цилиндрическая волна.

Волновой фронт — геометрическое место точек, до которых дошли колебания к данному моменту времени.

Волновая поверхность — геометрическое место точек, колеблющихся в одной фазе.

Характеристики волны

Длина волны λ — расстояние, на которое волна распространяется за время, равное периоду колебаний

Амплитуда волны А — амплитуда колебаний частиц в волне

Скорость волны v — скорость распространения возмущений в среде

Период волны Т — период колебаний

Частота волны ν — величина, обратная периоду

Уравнение бегущей волны

В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).

где v – скорость, φ0 – начальная фаза, ω – циклическая частота, A – амплитуда

Свойства механических волн

1. Отражение волн механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.

2. Преломление волн при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.

3. Дифракция волн отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.

4. Интерференция волн сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний

Интерференция и дифракция механических волн.

Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.

При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.

Когерентными называют волны, имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.

Условия максимума и минимума

Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ , где k = 0, 1, 2, . то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума:

Амплитуда результирующего колебания А = 2x0.

Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.

Условие минимума:

Амплитуда результирующего колебания А = 0.

Если Δd не равно целому числу полуволн, то 0

Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.

Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d

Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.

Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.

Примеры проявления дифракции. Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.

Стоячие волны

Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.

В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Колебания струны. В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.

Отсюда вытекает условие

Длинам волн соответствуют частоты

n = 1, 2, 3. Частоты v n называются собственными частотами струны.

Гармонические колебания с частотами v n называются собственными или нормальными колебаниями. Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.

Уравнение стоячей волны:

В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей:

В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны. Координаты узлов:

Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).

Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Механические волны Уравнение плоской волны Волновое уравнение. — презентация

Презентация была опубликована 8 лет назад пользователемБогдан Степунин

Похожие презентации

Презентация на тему: » Механические волны Уравнение плоской волны Волновое уравнение.» — Транскрипт:

1 Механические волны Уравнение плоской волны Волновое уравнение

2 Волны Процесс распространения механических колебаний в упругой среде называется механической волной. Волна переносит колебательное движение, энергию этого движения, но не сами частицы среды.

3 Волны Волна называется поперечной, если колебания частиц среды происходят вдоль направлений, перпендикулярных к направлению распространения волны. Поперечные волны могут распространяться в тех средах, в которых возникают упругие силы при деформации сдвига. Такими свойствами обладают только твердые тела.

4 Волны Волна называется продольной, если колебания частиц среды происходят вдоль направлений, параллельных направлению распространения волны. Продольные волны могут распространяться в таких средах, в которых возникают упругие силы при деформации сжатия или растяжения. Такими средами являются любые тела (твердые, жидкие, газообразные).

5 Волны Основными параметрами волны являются: фазовая скорость, частота колебаний, период колебаний Т, циклическая частота ω, длина волны λ.

6 Волны Фазовая скорость, или скорость распространения волны -это скорость, с которой перемещается в пространстве та или иная фаза колебания. Фазовая скорость зависит от плотности среды и ее упругих свойств.

7 Волны Частота колебаний – число полных колебаний, совершаемых любой частицей среды, в которой распространяется волна, за единицу времени. Период колебаний Т – промежуток времени, в течение которого любая из частиц совершает одно полное колебание.

8 Волны Циклическая частота – число полных колебаний, совершаемых за секунд. Длина волны : – расстояние между ближайшими частицами, колеблющимися в одинаковых фазах (что соответствует сдвигу фаз, равному ). Длина волны равна тому расстоянию, на которое волна распространяется за время, равное периоду:.

9 Волны Волновая поверхность – это геометрическое место точек, колеблющихся в одинаковой фазе. В зависимости от формы волновой поверхности различают плоские, сферические, цилиндрические, эллиптические волны и др.

10 Волны Поверхность, отделяющая колеблющиеся частицы от частиц, еще не пришедших в колебания, называется фронтом волны. Фронт волны в отличие от волновых поверхностей, которые неподвижны, перемещается со скоростью, равной скорости распространения волны.

11 Волны Нормаль, восстановленная к фронту волны в данной точке, указывает, в каком направлении распространяется волна в этой точке. Связь между основными параметрами волны устанавливается формулами:

12 Волны Величину называют волновым числом. Выразив через и, можно записать

13 Уравнение плоской волны Уравнение волны позволяет найти смещение любой частицы среды, в которой распространяется волна, для любого заданного момента времени: S=S(х, у, z, t), где S – смещение произвольной частицы от положения равновесия; х, у, z – декартовы координаты равновесного положения этой частицы; t – время.

14 Уравнение плоской волны Зависимость S=S(х, у, z, t) должна быть периодической функцией как координат, так и времени. Рассмотрим распространение плоской волны в положительном направлении оси x.

15 Уравнение плоской волны Выделим две волновые поверхности так, чтобы одна проходила через начало координат (поверхность О), другая – через произвольную точку с координатой х (поверхность Х).

16 Уравнение плоской волны Пусть колебания частиц, принадлежащих волновой поверхности О, происходят по закону Колебания частиц, принадлежащих поверхности Х, начнутся позже, так как требуется некоторое время для того, чтобы волна прошла расстояние, отделяющее поверхности О и Х.

17 Уравнение плоской волны Это время равно, где — скорость распространения волны. Следовательно, колебания частиц поверхности Х будут отставать от колебаний частиц поверхности О на :

18 Уравнение плоской волны Уравнение является уравнением плоской волны, распространяющейся вдоль оси х. Это уравнение можно записать в виде, если учесть:

19 Уравнение плоской волны Мгновенный график волны имеет вид

20 Уравнение плоской волны Рассмотрим плоскую волну, распространяющуюся в произвольном направлении

21 Уравнение плоской волны Колебания в плоскостях, проходящей через точку О и удаленной от этой точки на расстояние, будут происходить по законам:

22 Уравнение плоской волны Рассмотрим скалярное произведение Уравнение волны принимает вид

23 Волновое уравнение Уравнение плоской волны является решением соответствующего дифференциального уравнения, которое называется волновым. Волновое уравнение связывает вторые частные производные от смещения по координатам со вторыми производными от смещения по времени.

24 Волновое уравнение Продифференцируем уравнение волны дважды по времени и по координатам :

27 Сложив вторые производные по координатам и сопоставив сумму со второй производной по времени, получим волновое уравнение Использовали


источники:

http://light-fizika.ru/index.php/11-klass?layout=edit&id=138

http://www.myshared.ru/slide/672797/