Уравнение показательной функции по графику

Показательные уравнения и неравенства

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению показательных уравнений и неравенств. В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике «Методическая копилка репетитора по физике и математике» в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств, как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией.

Основные свойства показательной функции y = a x :

Свойствоa > 10 только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

0,\, b>0: \\ a^0 = 1, 1^x = 1; \\ a^<\frac>=\sqrt[n] \, (k\in Z,\, n\in N);\\ a^ <-x>= \frac<1>; \\ a^x\cdot a^y = a^; \\ \frac=a^; \\ (a^x)^y = a^; \\ a^x\cdot b^x = (ab)^x; \\ \frac=\left(\frac\right)^x.\\ \end> \]» title=»Rendered by QuickLaTeX.com»/>

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

0. \]» title=»Rendered by QuickLaTeX.com»/>

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x.

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x-2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f(x) > a g(x) равносильно неравенству того же смысла: f(x) > g(x). Если 0 f(x) > a g(x) равносильно неравенству противоположного смысла: f(x) 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t:

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

Воспользуемся заменой переменной:

Исходное уравнение тогда принимает вид:

Итак, неравенству удовлетворяют значения t, находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Поскольку основание степени в данном случае оказалось меньше единицы, но больше нуля, равносильным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательный ответ:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x+2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x+2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x+2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Показательная функция, ее свойства. Простейшие показательные уравнения

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы рассмотрим показательную функцию, ее график и основные свойства. Также научимся решать простейшие показательные уравнения.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Показательная функция и логарифм»

Открытый урок по теме «Показательная функция. Функционально-графические методы решений уравнений и неравенств»

Разделы: Математика

Цель: рассмотреть задачи Единого государственного экзамена базового, повышенного и высокого уровня сложности с применением функционально- графических методов на примере показательной функции у = а х , а>1, а0.

Задачи урока:

  1. повторить свойство монотонности показательной функции;
  2. свойство ограниченности показательной функции;
  3. повторить определение абсолютной величины; работа с графиками, содержащими модуль;
  4. ввести понятие сложной функции; рассмотреть графики сложной функции и их область значений;

Оборудование: презентация графиков функций, подготовленная с применением графической программы “Advanced Grapher”.

1. Вступительное слово учителя.

Слайд 0. Показательная функция. “Функционально — графические методы решения уравнений и неравенств”

Функционально — графический метод основан на использовании графических иллюстраций, применении свойств функции и позволяет решать многие задачи математики.

Сегодня мы рассмотрим задачи Единого государственного экзамена базового, повышенного и высокого уровня сложности с применением функционально- графических методов на примере показательной функции у = а х , а>1, а0. С помощью графической “Advanced Grapher” выполним иллюстрации ко всем задачам.

Слайд 0а. Почему так важно знать свойства показательной функции?.

  • По закону показательной функции размножалось бы все живое на Земле, если бы для этого имелись благоприятные условия, т.е. не было естественных врагов и было вдоволь пищи. Доказательство тому – распространение в Австралии кроликов, которых там не было раньше. Достаточно было выпустить пару особей, как через некоторое время их потомство стало национальным бедствием.
  • В природе, технике и экономике встречаются многочисленные процессы, в ходе которых значение величины меняется в одно и то же число раз, т.е. по закону показательной функции. Эти процессы называются процессами органического роста или органического затухания.
  • Например, рост бактерий в идеальных условиях соответствует процессу органического роста; радиоактивный распад веществ – процессу органического затухания.
  • Законам органического роста подчиняется рост вклада в Сберегательном банке, восстановление гемоглобина в крови у донора или раненого, потерявшего много крови.

2. Актуализация знаний учащихся.

На первом этапе урока устно по готовым чертежам повторим свойства показательной функции:

  • определение по графику функции соответствующей формулы;
  • свойство монотонности показательной функции;
  • свойство ограниченности показательной функции;

Слайд 1. Определить вид графика (устная работа 5 минут). На рисунке изображены графики показательных функций. Соотнесите график функции с формулой.


Рисунок1.


Рисунок2.


Рисунок3.


Рисунок4.

Слайд 2. Свойство монотонности показательной функции (устная работа 2 минуты).

Назовите функцию, возрастающую (убывающую) на множестве действительных чисел. Соотнесите график с соответствующей формулой


Рисунок5.


Рисунок6.

При 1 0 показательная функция убывает.

Слайд 3. Свойство ограниченности показательной функции (устная работа 2 минуты).

Укажите множество значений функции.


Рисунок7.

Графические методы дают возможность решать неравенства, содержащие разные функции.

Слайд 4. Решить графически неравенство.

Что можно сказать про графики функций и график функции у=12 — 1,5х?

(График показательной функции лежит выше функции, записанной в правой части уравнения).

>12 — 1,5х

Рисунок8.
Ответ: х>2. О

Рисунок9.
Oтвет: х>0.

2. Показательная функция содержит знак модуля в показателе степени.

Группа В – это комбинированные задачи. Рассмотрим задачи, содержащие абсолютную величину (модуль).

Повторим определение модуля.

(запись на доске)

Слайд 5. Укажите множество значений функции (5 минут).

Сделать записи в тетради:

1).

2).

Графическая иллюстрация представлена на слайде 5. Объяснить, как построены графики.

Рисунок10.
Е(у)=[1;

3. Нахождение области значений сложной функции.

Достаточно непросто определять область значений сложных функций.

Определим, что такое сложная функция. Если функция f ставит в соответствие числу х число у, а функция g – числу у число z, то говорят что h есть сложная функция, составленная из функции g и f и пишут h=g(f(x)).

При этом D(h) является E(f) или его частью D(h)E(f).

Слайд 7. Используя умение строить график квадратичной функции, определите последовательно координаты вершины параболы, найдите область значений.

, — вершина параболы.

Вопрос: определите характер монотонности функции.

Показательная функция у = 16 t возрастает, так как 16>1 .

При наименьшем значении показателя функции

.

Е(у)=[2;.

График иллюстрирует наш вывод.

Вопрос: определите характер монотонности функции.

Показательная функция у = убывает, так как х =t, t>0.

3t (3t 2 -6t) + 9t – 5 = p.

Введем функцию f(t) = 9t 3 -18t 2 + 9t – 5.

Исследуем функцию с помощью производной и построим ее график.

f ‘(x) =27t 2 – 36t + 9.

Найдем стационарные точки: f ‘(x)=0.

27t 2 – 36t + 9 = 0.

t1=1, t2=.

f()=9=-2+3-5=,

График функции f(t) = 9t 3 -18t 2 + 9t – 5 изображен на рисунке. Уравнение имеет 1 корень при р = -5 и р> .

Графическая иллюстрация решения выполнена с использованием программы “Advanced Grapher”.

1).

2).

3).Найдите все значения р, при которых уравнение

имеет ровно два корня.

6. Самостоятельная работа (при наличии времени).

Решить графически неравенство.

1).. Ответ: (-;2].

2). . Ответ: (-1;0)

По мере изучения курса алгебры постоянно возрастает применение функционально-графических методов, что позволяет быстро и красиво решать многие уравнения и неравенства Единого Государственного экзамена.


источники:

http://interneturok.ru/lesson/algebra/11-klass/pokazatelnaya-i-logarifmicheskaya-funktsii/pokazatelnaya-funktsiya-ee-svoystva-prosteyshie-pokazatelnye-uravneniya

http://urok.1sept.ru/articles/511934