Уравнение полиномиальной регрессии 2 порядка онлайн

Уравнение нелинейной регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Виды нелинейной регрессии

ВидКласс нелинейных моделей
  1. Полиномальное уравнение регрессии:
    y = a + bx + cx 2 (см. метод выравнивания)
  2. Гиперболическое уравнение регрессии:
  3. Квадратичное уравнение регрессии:
Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам
  1. Показательное уравнение регрессии:
  2. Экспоненциальное уравнение регрессии:
  3. Степенное уравнение регрессии:
  4. Полулогарифмическое уравнение регрессии: y = a + b lg(x)
Нелинейные по оцениваемым параметрам

Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x)ПреобразованиеМетод линеаризации
y = b x aY = ln(y); X = ln(x)Логарифмирование
y = b e axY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx 2x1 = x; x2 = x 2Замена переменных
y = a + bx + cx 2 + dx 3x1 = x; x2 = x 2 ; x3 = x 3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных

Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:

  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
ГодФактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), yСреднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х
1995872515,9
200038132281,1
200150143062
200264003947,2
200377085170,4
200498486410,3
2005124558111,9
20061528410196
20071892812602,7
20082369514940,6
20092515116856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535

МНК и регрессионный анализ Онлайн + графики

Данный онлайн-сервис позволяет найти с помощью метода наименьших квадратов уравнения линейной, квадратичной, гиперболической, степенной, логарифмической, показательной, экспоненциальной регрессии и др., коэффициенты и индексы корреляции и детерминации. Показываются диаграмма рассеяние и график уравнения регрессии. Также калькулятор делает оценку значимости параметров уравнения регрессии с помощью F-критерия Фишера, t-критерия Стьюдента и критерия Дарбина-Уотсона.

Можно задать уровень значимости и указать, до какого знака после запятой округлять расчётные величины.

Примечание: дробные числа записывайте через точку, а не запятую.

Линейная регрессия
Степенная регрессия
Квадратичная регрессия
Кубическая регрессия

Гиперболическая регрессия
Показательная регрессия
Логарифмическая регрессия
Экспоненциальная регрессия

Очистить

Округлять до
-го
знака после запятой.

Полиномиальный регрессионный калькулятор

Инструкции: Вы можете использовать этот многократный калькулятор линейного регрессии для оценки линейной модели, предоставляя значения образца для одного предиктора \((X)\), и его мощности до определенного порядка и одной зависимой переменной \((Y)\), используя форму ниже:

Полиномиальный регрессионный калькулятор

Подробнее об этом Полиномиальный регрессионный калькулятор Таким образом, вы можете иметь более глубокую перспективу результатов, которые будут предоставлены этим калькулятором.Полиномиальная регрессия очень похожа на простую линейную регрессию, только то, что теперь один предиктор и определенное количество его полномочий используются для прогнозирования зависимой переменной \(Y\).Модель полиномиальной линейной регрессии

\[ Y = \displaystyle \beta_0 + \beta_1 X + \beta_2 X^2 + . + \beta_n X^n + \epsilon\]

где \(\epsilon\) — это термин ошибок, который имеет свойство обычно распределенного со средним значением 0 и постоянной дисперсией \(\epsilon

N(0, \sigma^2)\).После предоставления значений образца для предиктора \(X\) и переменной ответа \(Y\), оценки коэффициентов наклона населения получают путем минимизации общей суммы в квадратных ошибках.Предполагаемая модель выражается как:

Выражение, которое используется для вычисления шансов для возникновения события, \(p\), с учетом его вероятности показано ниже:

\[ \hat Y = \displaystyle \hat\beta_0 + \hat\beta_1 X + \hat\beta_2 X^2 + . + \hat\beta_n X^n\]

Если, с другой стороны, вы хотите использовать только один предиктор, без питания, вы можете использовать это ПРОСТАЯ ЛИНЕЙНАЯ РЕГРЕССИОННАЯ КАЛЬКУЛЯТОР вместо.Или если у вас есть несколько предикторов, вам нужно использовать это Многократный линейный калькулятор регрессии Отказ


источники:

http://mathhelpplanet.com/static.php?p=onlayn-mnk-i-regressionniy-analiz

http://mathcracker.com/ru/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9-%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9-%D0%BA%D0%B0%D0%BB%D1%8C%D0%BA%D1%83%D0%BB%D1%8F%D1%82%D0%BE%D1%80