Уравнение получение этилена дегидратацией этанола

Этанол: химические свойства и получение

Этанол C2H5OH или CH3CH2OH, этиловый спирт – это органическое вещество, предельный одноатомный спирт .

Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.

Строение этанола

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этанол – жидкость с относительно высокой температурой кипения (температура кипения этанола +78 о С).

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Этанол смешивается с водой в любых соотношениях.

Изомерия спиртов

Структурная изомерия

Для этанола характерна структурная изомерия – межклассовая изомерия.

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3
Этиловый спиртДиметиловый эфир
СН3–CH2–OH CH3–O–CH3

Химические свойства этанола

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этанола с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этанол взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этанол взаимодействует с калием с образованием этилата калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат :

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140 о С) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

В качестве катализатора этой реакции также используют оксид алюминия.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140 о С образуется диэтиловый эфир:

4. Окисление этанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

Например, этанол окисляется оксидом меди до уксусного альдегида

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания этанола:

5. Дегидрирование этанола

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этанола образуется этаналь

Получение этанола

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорэтана с водным раствором гидроксида натрия образуется этанол

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании этаналя образуется этанол

4. Получение этанола спиртовым брожением глюкозы

Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.

Практическое занятие № 8. Получение этилена и изучение его свойств

Задания. 1. Получите этилен из этилового спирта.

2. Проведите характерные реакции для этилена как представителя непредельных углеводородов.

Оборудование. Прибор для получения этилена, штатив с пробирками, стеклянные трубки с оттянутым концом, лучинка, фарфоровая пластинка или чашечка, чашка с песком, лабораторный штатив, горелка, спички, мензурка, свернутая спирально медная проволока, которая должна быть вложена в газоотводную трубку.

Вещества. Этиловый спирт, серная кислота (конц.), раствор бромной воды и розовый раствор подкисленного перманганата калия, промытый и прокаленный речной песок.

1. Получение этилена. Соберите прибор для получения этилена (рис. 22.6) и проверьте его на герметичность.

Для получения этилена в пробирку поместите 1,5 мл этилового спирта, затем осторожно прилейте 4 мл концентрированной серной кислоты и добавьте в смесь немного прокаленного песка. Закройте пробирку пробкой с газоотводной трубкой и закрепите прибор в штативе.

2. В две пробирки прилейте по 2 мл растворов бромной воды и перманганата калия. Нагрейте в приборе для получения этилена смесь до кипения и, не переставая нагревать, но не перегревая, опустите конец газоотводной трубки сначала в

пробирку с бромной водой, а затем в пробирку с раствором перманганата калия.

Что вы наблюдаете? Составьте уравнения химических реакций: а) получения этилена из этилового спирта; б) взаимодействия этилена с бромной водой.

Направьте конец газоотводной трубки прибора вверх и подожгите лучиной выделяющийся этилен. Отметьте характер пламени. Внесите в пламя этилена на несколько секунд фарфоровую пластинку или чашу. Что вы наблюдаете?

Вдувайте воздух через стеклянную трубку с оттянутым концом в среднюю часть пламени этилена. Как изменяется яркость пламени? Почему? Составьте уравнение реакции горения этилена.

Концентрированная серная кислота обладает свойством отбирать воду у других веществ. Это свойство использовано для получения этилена.

Вода частично конденсируется на стенках пробирки и скатывается обратно в раствор. Этилен уходит по газообразной трубке. Свойства этилена:

При пробулькивании этилена через раствор бромной воды и перманганата происходит обесцвечивание.

Этилен горит желтым пламенем, при внесении фарфоровой чашки она чернеет, из-за неполного сгорания этилена образуется свободный углерод — сажа черного цвета. При вдувании воздуха в пламя этилена происходит полное сгорание этилена, и пламя из желтого становится синим.

Решебник по химии за 9 класс (Л.С.Гузей, В.В.Сорокин, Р.П.Суровцева, 2000 год),
задача №8
к главе «Практические занятия».

Получение этилена и исследование его свойств

Данная практическая работа может использоваться как теоретический материал при подготовке к практической работе на уроке. Учащиеся дома повторяют правила техники безопасности, изучают цель работы, какое оборудование и реактивы необходимы в ходе работы, а так же какие наблюдения и выводы нужно будет записать при оформлении отчета.

Просмотр содержимого документа
«Получение этилена и исследование его свойств»

Общие положения техники безопасности на уроках химии

Химия – предмет, который предполагает изучение и работу с химическими веществами.

Во время урока, при работе учащихся могут иметь место вредные и опасные факторы:

отравление химическими веществами;

получение химических ожогов агрессивными веществами;

травмирования осколками стекла;

травмирования в результате взрыва или самовозгорания химических веществ, при нарушении условий их хранения.

Поэтому на уроках химии учащимся, прежде всего, нужно усвоить «химическую практику» и правила безопасного обращения с химическими веществами.

Это означает, что:

учащиеся обязаны знать свойства веществ, с которыми они работают и безопасные приемы обращения с ними;

выполнять требования безопасности при обращении со стеклянной посудой и ампулами;

знать правила обезвреживания и уничтожения вредных веществ;

выполнять только порученную учителем работу;

выполнять правила эксплуатации используемого оборудования;

соблюдать правила личной гигиены;

содержать рабочее место в чистоте;

правильно применять средства индивидуальной и коллективной защиты;

знать и соблюдать требования пожарной безопасности и уметь пользоваться средствами пожаротушения;

немедленно извещать учителя о любой ситуации, угрожающей здоровью и жизни людей (учеников), об инциденте или ухудшении состояния своего здоровья;

уметь оказывать первую (доврачебную) помощь при несчастных случаях (отравлении, термическом и химическом ожогах).

В кабинете химии должны быть в наличии:

аптечка, содержащая медикаменты для оказания первой медицинской помощи;

раствор для нейтрализации токсичных веществ, применяемых в работе;

средства индивидуальной защиты;

средства пожаротушения (огнетушитель, ящик с песком). Тара, в которой хранятся химические вещества должна иметь четкие надписи.

В кабинете химии ЗАПРЕЩАЕТСЯ:

выполнение работ, не связанных с заданием или во внеурочное время;

хранение химических веществ в таре, не имеющей надписи;

совместное хранение в непосредственной близости друг к другу веществ, которые могут вызвать в результате химического взаимодействия пожар или взрыв;

хранение химических веществ в количествах, превышающих суточную норму;

применение химической посуды для личного пользования;

бегать и прыгать;

Практическая работа № 2

Получение этилена и изучение его свойств.

Цель: научиться получать в лаборатории этилен; изучить физические и химические свойства этилена.

Оборудование: пробирки, пробка с газоотводной трубкой, штатив, спиртовая горелка, спички.

С правилами техники безопасности ознакомлен(а) и обязуюсь их выполнять.

Описание опыта, рисунок

Наблюдения и уравнения реакций

В пробирку налили 1 мл этилового спирта и осторожно добавьте 6—9 мл концентрированной серной кислоты. Затем всыпали немного прокаленного песка (чтобы предотвратить толчки жидкости при кипении). Закрыли пробирку пробкой с газоотводной трубкой, закрепили ее в штативе и осторожно нагрели содержимое пробирки.

В пробирке начинается выделяться газ — этилен.

С2H5OH C2H4↑ + H2O.

В ходе реакции концентрированная серная кислота забирает воду из спирта, врезультате образуется этилен.

Такую реакцию называют – реакция дегидратации.

Изучение свойств этилена.

В другую пробирку налили 2-3 мл бромной воды. Опустили газоотводную трубку первой пробирки до дна пробирки с бромной водой и пропускали через неё выдедяющийся газ.

При пропускании газа через бромную воду, происходит обесцвечивание бромной воды.

В ходе реакции происходит окисление этилена бромной водой по двойной связи.

В третью пробирку налили 2-3 мл разбавленного раствора KMnO4, поодкисленного серной кислотой, и пропустили через него газ.

При пропускании газа через подкисленный раствор KMnO4, происходит обесцвечивание раствора KMnO4.

В ходе реакции происходит окисление этилена подкисленным раствором перманганата калия.

Выделяющиеся газ первой пробирки подожгли.

Этилен на воздухе горит ярким светящимся пламенем.

Этилен горит ярким светящимся пламенем, что доказывает наличие кратных связей.

Общий вывод: на данной практической работе мы научились получать в лаборатории этилен реакцией дегидратации спиртов; изучили химические свойства этилена, а именно, действие этилена на бромную воду и подкисленный раствор перманганата калия.

Какой из гомологов этена имеет плотность по воздуху 1,45?

Ответ: D(возд.) = Mr (алкена)/Mr (воздуха);

Mr (алкена) = D(возд.)* Mr (воздуха);

Mr (алкена) = 1,45*29 = 42.

Какой из гомологов пропена имеет плотность по водороду 14?

Ответ: D(Н2) = Mr (алкена)/Mr (Н2);


источники:

http://5terka.com/node/10050

http://multiurok.ru/files/poluchenie-etilena-i-issledovanie-ego-svoistv.html