Уравнение получения хлора из хлороводорода

Соединения хлора

Хлороводород, соляная кислота (HCl)

Способы получения хлороводорода

Промышленный способ:

  • Синтез из простых веществ:
  • Образуется как побочный продукт при хлорировании углеводородов:

R-H + Cl2 = R-Cl + HCl

Лабораторный способ:

В лаборатории HCl получают действием концентрированной H2SO4 на хлориды:

  • при слабом нагревании
  • при очень сильном нагревании

Физические свойства хлороводорода

HCl при обычной температуре — бесцветный газ с резким запахом, достаточно легко сжижается (Тпл = -114°С, Ткип = -85°С). Безводный НСl и в газообразном, и в жидком состояниях не проводит электрический ток.

HCl хорошо растворяется в воде: при обычной температуре в 1 л воды растворяется

450 л газа (реакция экзотермическая). Насыщенный раствор содержит 36-37 % HCl по массе, имеет резкий, удушающий запах.

Химические свойства хлороводорода

Газообразный HCl

Безводный НСl химически инертен по отношению к металлам, оксидам и гидроксидам металлов, а также ко многим другим веществам. Что означает, что в отсутствие воды хлороводород не проявляет кислотных свойств.

И только при очень сильном нагревании газообразный HCl реагирует с металлами, даже такими малоактивными, как Сu и Аg.

Восстановительные свойства HCl проявляются также в малой степени:

  • он может окисляться фтором при обычной температуре:
  • при высокой температуре (600°С) в присутствии катализаторов обратимо реагирует с кислородом:

Раствор HCl

Водный раствор HCl является сильной кислотой, т.к. молекулы HCl практически полностью распадаются на ионы:

Общие свойства кислот

Он проявляет все свойства кислот:

  • реагирует с металлами, стоящими в электрохимическом ряду напряжения металлов до водорода Н:
  • взаимодействует с основными и амфотерными оксидами:
  • реагирует с основаниями и амфотерными гидроксидами:
  • Вступает в реакцию с аммиаком:
  • взаимодействует с солями более слабых кислот:
  • Реагирует с сильными окислителями F2, MnO2, KMnO4, KClO3, K2Cr2O7. При этом анион Cl — окисляется до свободного хлора:

2Cl — — 2e — = Cl2 0

  • Качественная реакция – взаимодействие с растворимыми солями серебра с образованием белого творожистого осадка хлорида серебра:
  • С органическими соединениями

Вступает в реакции с органическими соединениями:

с аминами:

с аминокислотами:

Кислородсодержащие кислоты галогенов

Хлорноватистая кислота (HClO) и ее соли

Хлорноватистая кислота очень слабая кислота и существует только в разбавленных водных растворах.

Получение хлорноватистой кислоты:

  • Диспропорционирование хлора в холодной воде:
  • Реакция гипохлоритов с диоксидом углерода и водой :

Химические свойства хлорноватистой кислоты:

  • Несмотря на то, что хлорноватистая кислота HClO –слабая кислота, она является сильным окислителем, особенно в кислой среде. При этом хлор хлорноватистой кислоты восстанавливается до степени окисления -1.

HClO + KI → KIO3 + HCl

2HBr + HClO → HCl + Br2 + H2O

4HClO + MnS → 4HCl + MnSO4

  • на свету хлорноватистая кислота разлагается:
  • Как кислота реагирует с сильными основаниями:

HClO + KOH → KClO + H2O

  • Хлорноватистая кислота диспропорционирует:

3HClO → 2HCl + НСlO3

Химические свойства солей хлорноватистой кислоты (гипохлоритов):

  • Разложениегипохлоритов при нагревании:
  • Кислоты, более сильные, чем хлорноватистая вытесняют гипохлориты из солей:

NaClO + 2HCl → NaCl + Cl2 + H2O

  • Взаимодействуют с другимисолями, если продуктом является слабый электролит:

Хлористая кислота (HClO2) и ее соли

Хлористая кислота HClO2– слабая кислота, существует только в водных растворах, очень неустойчива

Способы получения хлористой кислоты:

  • Хлористую кислоту можно получить окислением оксида хлора пероксидом водорода:

Химические свойства хлористой кислоты:

  • Вступает в реакциис щелочами с образованием хлоритов:
  • При длительном хранении разлагается:

Соли хлористой кислоты – хлориты

  • разлагаются при нагревании:
  • реагируют с сильными кислотами:
  • являются слабыми восстановителями и сильными окислителями в кислой среде:

Хлорноватая кислота (HClO3) и ее соли

Хлорноватая кислота HClO3– существует только в водных растворах, в свободном виде не выделена. Является сильной кислотой

Получение хлорноватой кислоты:

Действием кислот на хлораты:

Химические свойства хлорноватой кислоты:

  • Взаимодействует с щелочами с образованием хлоратов:
  • Окисляет некоторые вещества:
  • Разлагается при слабом нагревании:

Соли хлорноватой кислоты – хлораты:

Получают хлораты при пропускании хлора через подогретый раствор щелочи:

  • Хлораты сильные окислители.
  • хлорат калия (бертолетова соль) при нагревании разлагается диспропорционируя на хлорид и перхлорат калия:
  • В присутствии оксида марганца (IV) в качестве катализатора хлорат калия разлагается с выделением кислорода:

Хлорная кислота (HClO4) и ее соли

Хлорная кислота HClO4– летучая, хорошо растворимая в воде жидкость, не имеющая цвета. Является сильной кислотой и сильным окислителем. Взрывоопасна. Кислотный оксид — Cl2O7, соли хлорной кислоты — перхлораты.

Получение хлорной кислоты

Перегонкой при пониженном давлении смеси перхлората калия с серной кислотой:

Химические свойства хлорной кислоты

  • Как сильная кислота вступает в реакции с щелочами с образованием перхлоратов:
  • Как сильный окислитель окисляет многие вещества:
  • Хлорная кислота является неустойчивой и разлагается при умеренном нагревании:

Химические свойства солей хлорной кислоты – перхлоратов:

  • Перхлораты также являются сильнымиокислителями
  • Взаимодействуют с сильными кислотами:
  • При нагревании более 550ºС разлагаются:

Оксиды хлора

Оксид хлора (I), оксид дихлора ( Cl2O)

В газообразном состоянии имеет темно-желтый цвет, в жидком состоянии – красно-бурый. Неустойчив на свету при повышении температуры.

Получение оксид хлора (I)

Химические свойства оксида хлора (I)

  • Имеет кислотные свойства. Реагирует с водой, щелочами:
  • Является сильным окислителем:
  • При температуре выше 20ºС или на свету разлагается:

Оксид хлора (IV), диоксид хлора, двуокись хлора ( ClO2)

ClO2 – ядовитый газ желто-зеленого цвета с резким запахом. Взрывается при механическом воздействии, при нагревании до 100 ºС и при контакте с восстановителем

Получение двуокиси хлора

В промышленности ClO2 получают, пропуская оксид серы (IV) через подкисленный раствор хлората натрия NaClO3:

В лаборатории ClO2получают при взаимодействии хлората калия с щавелевой кислотой в присутствии концентрированной серной кислоты:

Химические свойства оксида хлора (IV)

  • ClO2 сильный окислитель, проявляет кислотные свойства. Реагирует с водой (медленно), со щелочью (быстро):

6ClO2 + 3H2O = HCl + 5HClO3 (горячая вода)

  • Разлагается в концентрированной хлороводородной кислоте:
  • Проявляет окислительно-восстановительные свойства:

Оксид хлора (VI), триоксид хлора (ClO3 (Cl2O6))

ClO3 (Cl2O6) – вязкая жидкость красного цвета. Соприкосновение с органическими веществами приводит к взрыву.

Получение оксида хлора (VI)

Получают окислением озоном ClO2

Химические свойства оксида хлора (VI)

  • В обычных условиях постепенно разлагается на ClO2 и О2:
  • ClO2 – сильный окислитель. Вступает в реакции диспропорционирования с водой, со щелочью:

Оксид хлора (VII) (Cl2О7)

Cl2О7 – тяжелая, маслянистая жидкость, не имеющая цвета. Наиболее устойчивый из всех оксидов хлора. Очень взрывоопасен.

Получение оксида хлора (VII)

Получают при взаимодействии оксида фосфора (V) с концентрированной хлорной кислотой:

Химические свойства Cl2O7

Проявляет кислотные свойства.

  • При взаимодействии Cl2О7 с водой образуется хлорная кислота HClO4:
  • При взаимодействии Cl2О7 с щелочами образуются перхлораты:
  • При нагревании разлагается:

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e1422e0885c0c31 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Способ конверсии хлороводорода для получения хлора

Владельцы патента RU 2448038:

Изобретение может быть использовано в неорганической химии. Способ конверсии хлороводорода для получения хлора включает хлорирование оксида железа (III) газовой смесью хлороводорода и водорода, выделение хлорида железа (II) из газовой смеси продуктов хлорирования, окисление хлорида железа (II) кислородом с выделением хлора и возврат оксида железа (III) на стадию хлорирования. Хлорирование оксида железа (III) проводят при температуре 1000-1200°С газовой смесью хлороводорода и водорода с объемным отношением 8:1. Окисление хлорида железа (II) кислородом выполняют при температуре 1000-1200°C с выделением хлора. Изобретение позволяет получать хлор из хлороводорода с высокой удельной производительностью без катализаторов и прямых затрат электрической энергии. 2 пр.

Изобретение относится к области химической технологии неорганических веществ и касается получения хлора.

Для получения хлора из хлороводорода известны различные способы электролиза водных растворов соляной кислоты (Л.М.Якименко Производство хлора, каустической соды и неорганических хлорпродуктов. М.: Химия, 1974, 600 с.). Процессы на аноде зависят от условий проведения электролиза, в частности от концентрации кислоты, температуры, материала анода и др. В промышленных электролизерах обычно используют

30%-ную соляную кислоту, температура раствора 70-85°C. На производство 1 т Cl2 расходуется примерно 1800-1900 кВт*ч электроэнергии постоянного тока. При этом попутно производится дополнительный продукт — водород, выделяющийся на катоде.

С целью снижения удельного расхода электроэнергии до 900-1500 кВт* ч/т Cl2 и упрощения конструкции электролизера разрабатывались различные способы электролиза водных растворов хлоридов металлов (Hg, Ni, Cu) (Teske W., Holleman H., Z. Electrochem. 1962, 66, №10, P.788). При этом на катоде происходит восстановление иона металла. Конструкция электролизера упрощается, так как отпадает необходимость в специальных устройствах для разделения катодных и анодных газов. Однако возникает потребность в регенерации электролита, которая усложняет схему производства.

Известен способ окисления хлороводорода кислородом в водном растворе с использованием электролизера с газодиффузионным катодом на основе допированных азотом углеродных нанотрубок (WO 2009/118162). Недостатком способа является сложность изготовления газодиффузионного катода.

Общими недостатками различных вариантов получения хлора из хлороводорода электролизом являются значительные прямые затраты электрической энергии и невысокая удельная производительность электролизеров.

С 1868 года известен каталитический способ получения хлора, основанный на окислении хлороводорода кислородом воздуха или чистым кислородом — процесс Дикона (Henry Deacon, US Patent 85370). Первоначально катализатором служил хлорид меди, нанесенный на дробленый кирпич или пемзу. Реакция окисления протекала с приемлемой скоростью при температуре около 450°C, на выходе из конвертора газовая смесь содержала 6-8% хлора. Позднее в качестве катализатора окисления хлороводорода испытывались соединения меди, железа, хрома или композиция на их основе. Оптимальная рабочая температура таких катализаторов лежит выше 350°C, но в этих условиях происходит довольно быстрое улетучивание активных компонентов катализатора и снижение степени конверсии.

Известны различные варианты усовершенствованного способа окисления хлороводорода по Дикону с использованием высокоактивных катализаторов, позволяющих снижать температуру процесса, имеющих меньшую летучесть и сниженную чувствительность к отравлению. Предлагалось применение кислорода вместо воздуха, проведение процесса в псевдоожиженном слое (UK 1192666 (1970); FRG patent 1271083, 1271084 (1968); French patent 1521916 (1968)).

К недостаткам каталитических процессов следует отнести относительно невысокую удельную производительность и необходимость регенерации или замены дорогостоящих катализаторов.

Известен способ получения хлора окислением хлороводорода в проточной реакционной зоне в среде низкотемпературной плазмы под воздействием импульсного электрического разряда (WO 2008/002197 A1). Недостатком способа является трудность поддержания расконтрагированного разряда в плазме электроотрицательного газа при нормальном и повышенном давлениях. Понижение давления газа, когда такой разряд относительно легко осуществим, заметно уменьшает удельную производительность процесса. Энергозатраты плазмохимического способа сопоставимы с электрохимическим.

Известны двустадийные способы окисления хлороводорода с переносчиком хлора. Принцип метода с переносчиком хлора состоит в разделении процесса конверсии на несколько стадий, из которых первая стадия — перевод хлороводорода в хлорид металла, а последняя — окисление полупродукта кислородом и получение хлора (US Patent 3325252 (1967), US Patent 4073874 (1978)).

Наиболее близким к предлагаемому изобретению является способ двустадийной конверсии хлороводорода с использованием хлорида железа (II) (WO 01/64578 A1 (2001)). Недостатками данного способа являются проведение процесса при относительно невысоких температурах (200-450°C) и применение пористых инертных носителей для оксида и хлорида железа, что существенно снижает удельную производительность реактора конверсии хлороводорода. Кроме того, при продувании кислородом пористого носителя происходит унос хлорида железа (III) за счет реакции хлорида железа (II) с выделяющимся хлором.

Предлагаемое изобретение направлено на разработку высокопроизводительного процесса конверсии хлороводорода для рециклинга хлора с использованием в качестве реагентов водорода, кислорода и рециклируемого в процессе оксида железа (III). Поставленная задача решается путем высокотемпературного хлорирования оксида железа (III) газовой смесью хлороводорода и водорода, а затем окисления хлорида железа (II) кислородом и выделением хлора.

На первой стадии процесса во вращающуюся печь при температуре 1000-1200°C через дозирующее устройство подается оксид железа (III) в виде гранул или таблеток. В противоточном режиме твердый оксид железа (III) хлорируется газовой смесью хлороводорода и водорода при объемном соотношении 8:1, давлении 0,1 МПа по реакции:

Испытания показали, что двукратный избыток хлороводорода в газовой смеси по отношению к образующемуся хлориду железа (II) устанавливается самопроизвольно. Он необходим для подавления возможного гидролиза хлорида железа (II) до выделения его из газовой смеси продуктов реакции. При прочих равных условиях скорость хлорирования оксида железа (III) стехиометрической газовой смесью хлороводорода и водорода оказалась в 4 раза выше, чем при хлорировании без водорода. Кроме того, введение водорода в газовую смесь приводит к предотвращению образования хлорида железа (III), физические и химические свойства которого заметно отличаются от свойств хлорида железа (II).

После понижения температуры газовой смеси продуктов реакции до 500-600°С из нее выделяется твердый хлорид железа (II), а смесь избыточного хлороводорода и паров воды поступает на разделение, после которого осушенный газообразный хлороводород возвращается на стадию хлорирования.

На второй стадии процесса твердый хлорид железа (II) испаряется при температуре 1000-1200°C и подается в реактор окисления, где смешивается с кислородом:

Для ускорения процесса нуклеации макрочастиц в поток рекомендуется вводить зародыши оксида железа (III). После выделения из газовой фазы твердый оксид железа (III) подвергается гранулированию и возвращается на стадию хлорирования.

Регенерированный газообразный хлор направляется в целевой технологический процесс.

Удельная производительность процесса на стадии хлорирования оксида железа (III) по связанному хлору может достигать величины 130 т/(м 3 *ч) Cl2. Стадия окисления хлорида железа (II) кислородом в газовой фазе является лимитирующей в общем процессе, и удельная производительность реактора окисления может достигать величины 3 т/(м 3 *ч) Cl2. Расход водорода на получение 1 т хлора составляет 14,1 кг, расход кислорода 677 кг.

Во вращающуюся трубчатую печь при температуре 1100°C подается гранулированный оксид железа со скоростью 0,94 кг/с. В противотоке при давлении 0,1 МПа в печь подается газовая смесь хлороводорода и водорода с отношением 8:1 со скоростью 1186 дм 3 /с. На выходе печи образуется хлорид железа (II) со скоростью 1,49 кг/с и газовая смесь хлороводорода и паров воды с отношением 2:1,5 со скоростью 922,3 дм 3 /с. При температуре 550°C хлорид железа (II) конденсируется из газовой фазы и транспортируется в испаритель. После отделения воды циркулирующий газообразный хлороводород со скоростью 527 дм 3 /с возвращается в смеситель для получения водород-хлороводородной хлорирующей газовой смеси.

В реактор окисления объемом 1 м 3 при температуре 1100°C и давлении 0,1 МПа из испарителя подается газообразный хлорид железа (II) со скоростью 263,5 дм 3 /с и кислород со скоростью 395,2 дм 3 /с. На выходе реактора образуется хлор со скоростью 263,5 дм 3 /с и оксид железа со скоростью 0,94 кг/с. Твердый оксид железа (III) подвергается гранулированию и возвращается в дозирующее устройство на стадию хлорирования. Общий расход реагентов: хлороводород 527 дм 3 /с, водород 131,8 дм 3 /с, кислород 395,3 дм 3 /с.

Во вращающуюся трубчатую печь при температуре 1100°C подается гранулированный оксид железа со скоростью 2,81 кг/с. В противотоке при давлении 0,1 МПа подается газовая смесь хлороводорода и водорода с отношением 8:1 со скоростью 3557 дм 3 /с. На выходе печи образуется хлорид железа (II) со скоростью 4,47 кг/с и газовая смесь хлороводорода и паров воды с отношением 2:1,5 со скоростью 2767 дм 3 /с. При температуре 550°C хлорид железа (II) конденсируется из газовой фазы и транспортируется в испаритель. После отделения воды циркулирующий газообразный хлороводород со скоростью 1581 дм 3 /с возвращается в смеситель для получения водород-хлороводородной хлорирующей газовой смеси.

В реактор окисления объемом 3 м 3 при температуре 1100°C и давлении 0,1 МПа из испарителя подается газообразный хлорид железа (II) со скоростью 790,5 дм 3 /с и кислород со скоростью 1186 дм 3 /с. На выходе реактора образуется хлор со скоростью 790,5 дм 3 /с и оксид железа (III) со скоростью 2,81 кг/с. Твердый оксид железа (III) подвергается гранулированию и возвращается в дозирующее устройство на стадию хлорирования. Общий расход реагентов: хлороводород 1581 дм 3 /с, водород 395,3 дм 3 /с, кислород 1186 дм 3 /с при давлении 0,1 МПа.

Способ конверсии хлороводорода для получения хлора, включающий хлорирование оксида железа (III) газовой смесью хлороводорода и водорода, выделение хлорида железа (II) из газовой смеси продуктов хлорирования, окисление хлорида железа (II) кислородом с выделением хлора и возврат оксида железа (III) на стадию хлорирования, отличающийся тем, что хлорирование оксида железа (III) проводится при температуре 1000-1200°С газовой смесью хлороводорода и водорода с объемным отношением 8:1, и окисление хлорида железа (II) кислородом выполняется при температуре 1000-1200°C с выделением хлора.


источники:

http://gomolog.ru/reshebniki/8-klass/zadachnik-kuznecova-2020/8-37.html

http://findpatent.ru/patent/244/2448038.html