Уравнение получения водорода из активного металла

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e2a6203fa6c977f • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Получение водорода в промышленности и в лаборатории

Задача 785.
Почему в периодической системе элементов водород относят как к I, так и к VII группе?
Решение:
Атом водорода содержит один электрон, его электронная конфигурация имеет вид: 1s 2 . Поэтому атом водорода способен как отдавать, так и присоединять по одному электрону. Таким образом, образом водород проявляет двойственную химическую природу, как окислительную, так и восстановительную способность. В большинстве реакций водород выступает в качестве восстановителя, образуя соединения, в которых степень его окисленности равна +1. в реакциях с активными металлами водород выступает в качестве окислителя, степень окисленности его при этом равна -1. Итак, водород, отдавая электрон, проявляет сходство с металлами I-й группы главной подгруппы периодической системы химических элементов, а, присоединяя электрон, — с неметаллами VII-й группы главной подгруппы. Поэтому водород в периодической системе обычно помещают в главной подгруппе I-й группы и, в тоже время, в скобках, помещают в главной подгруппе VII-й группы.

Задача 786.
Как получают водород в промышленности и в лаборатории? Привести уравнения реакций.
Решение:
а) Получение водорода в промышленности:
1. Получение синтез-газа:

3. Электролиз водного раствора едкого натра или едкого калия. Используют 25% NaOH или 34% КОН. Электроды изготавливают из листового никеля. При этом на катоде выделяется водород, а на аноде – кислород:

Катодный процесс: 2Н2О + 2 = Н2 + 2ОН — ;
Анодный процесс: 4ОН — — 4 = О2 + 4Н + .

4. Вытеснение водорода из воды различными металлами. Метод основан на том, что активные металлы вытесняют водород из воды, например, натрий и кальций разлагают воду при обычных условиях, магний – при нагревании, цинк – при накаливании с водяным паром, железо – при нагревании около 700 о C . Чаще всего используют в промышленности для получения водорода так называемый железо-паровой метод:

5. Получение водорода из природного газа. В промышленности по этому методу природный газ смешивают с кислородом и водяным паром при нагревании данной смеси до 800-900 0 С в присутствии катализатора (пароводяная и кислородная конверсия):

6. Метод выделения водорода из коксового газа или из газов переработки нефти. Метод основан на глубоко охлаждении газовой смеси, при котором все газы кроме водорода сжижаются – водород остаётся в газовой фазе, которую под давлением собирают в баллоны.

7. Метод получения водорода при получении сажи из природного газа:

8. Метод получения водорода при пропускании паров воды над раскалённым углем при температуре 10000 о C (водяной газ, содержащий до 86% угарного газа и водорода):

б) Получение водорода в лабораторных условиях:

1. Метод растворения цинка в холодной соляной кислоте или в разбавленной серной кислоте:

2. Растворение алюминия с сильными щелочами:

3. Электролиз раствора КОН (электроды из листового никеля):

Катодный процесс: 2Н2О + 2 = Н2 + 2ОН — ;
Анодный процесс: 4ОН — — 4 = О2 + 4Н + .

4. Действие порошком алюминия на кипящую воду в присутствии нескольких капель разбавленного перманганата калия:

5. В полевых условиях водород получают из смеси (порошок ферросилиция с сухим Са(ОН)2 и NaOH). При поджигании данной смеси сначала она начинает тлеть, а затем наблюдается выделение водорода:

Смесь называется гидрогенит.

Задача 787.
Можно ли для электролитического получения водорода использовать в качестве электролита водные растворы H2SO4, K2,SO4 KCl, CuSO4, NaOH? Ответ обосновать.
Решение:
Электродные потенциалы калия, натрия и меди соответственно равны -2,92 В, -2,714 В и +0,337 В, а водородного электрода в кислой в щелочной и в нейтральной средах соответственно равен 0,00 В, -0,83 В и -0,41 В. При этом на катоде происходит электрохимическое выделение водорода в зависимости от условий среды:

Катодный процесс:
В кислой среде: 2H + + 2 = Н2 ↑ ;
В щелочной или нейтральной среде: 2Н2О + 22 = H2 + 2ОН — .

Следовательно, при электролизе H2SO4 будет разряжаться ионы водорода и выделяться газообразный водород.

При электролизе K2SO4 и KCl происходит электрохимическое восстановление воды, результатом которого будет выделение водорода и гидроксид-ионов, потому что электродный потенциал калия (-2,92 В) значительно электроотрицательнее, чем потенциалы -0,41В и -0,83 В.

При электролизе раствора CuSO4 будет происходить разряд ионов меди и, при этом на катоде выделится металлическая медь, потому что электродный потенциал меди значительно положительнее, чем потенциал водородного электрода.

При электролизе NaOH происходит электрохимическое восстановление воды, результатом которого будет выделение водорода и гидроксид-ионов, потому что электродный потенциал натрия (-2,714 В) значительно электроотрицательнее, чем потенциалы -0,41 В и -0,83 В.

Таким образом, для электрохимического получения водорода можно использовать растворы H2SO4, K2SO4 KCl и NaOH.

Задача 788.
Железо-паровой метод получения водорода основан на обратимой реакции:
Fe + 4H2O = Fe3O4 + 4H2 ↑ . В каких условиях следует осуществлять этот процесс, чтобы реакция протекала до практически полного окисления железа?
Решение:
Уравнение реакции имеет вид:

Из уравнения реакции следует, что из четырёх молекул парообразной воды образуется четыре молекулы газообразного водорода, т.е. реакция протекает без изменения числа молей газообразных веществ, поэтому равновесие системы не нарушается при изменении давления. В данном случае при удалении продукта реакции водорода из реакционной зоны равновесие системы согласно принципу Ле Шателье сместится вправо, в сторону увеличения образования водорода. Но лучше всего выводить из реакционной системы твёрдый продукт Fe3O4, что будет способствовать смещению равновесия вправо, если железную окалину направлять на регенерацию, допустим посредством накаливания окалины в струе паровоздушной смеси и, затем, возвратить образуемое металлическое железо в реакционную зону. Избыток металлического железа будет способствовать ускорению реакции и, следовательно, увеличению продукта реакции. Таким образом, отведение водорода и регенерация железа способствуют протеканию реакции до практически полного окисления металлического железа.

Водород: химия водорода и его соединений

Водород

Положение в периодической системе химических элементов

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

Степень окисленияТипичные соединения
+1кислоты H2SO4, H2S, HCl и др.

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

основные соли (CuOH)2CO3

-1гидриды металлов NaH, CaH2 и др.

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

CH4 — метан NH3 — аммиакH2O — вода HF –фтороводород
SiH4 — силанPH3 — фосфин H2S — сероводород HCl –хлороводород
AsH3 — арсин H2Se — селеноводород HBr –бромоводород
H2Te — теллуроводород HI –иодоводород

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений

Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Физические свойства

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

Химические свойства

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).


источники:

http://buzani.ru/zadachi/khimiya-glinka/1261-sposoby-polucheniya-vodoroda-zadachi-785-788

http://chemege.ru/hydrogen/