Уравнение последовательного колебательного контура вынужденные

Уравнение последовательного колебательного контура вынужденные

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями .

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими . Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.

Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника .

Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δ. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока .

Рассмотрим последовательный колебательный контур, то есть -цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):

,

где 0 – амплитуда, ω – круговая частота.

Рисунок 2.3.1.

Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому для мгновенных значений токов и напряжений можно записать закон Ома:

Величина – это ЭДС самоиндукции катушки, перенесенная с изменением знака из правой части уравнения в левую. Эту величину принято называть напряжением на катушке индуктивности .

Уравнение вынужденных колебаний можно записать в виде

,

где , и – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами , и . При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм .

На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).

Рисунок 2.3.2.

Длины векторов на диаграмме равны амплитудам и колебаний, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом . Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:

Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением , конденсатору с емкостью и катушки с индуктивностью . Во всех трех случаях напряжение на резисторе, конденсаторе и катушке равно напряжению источника переменного тока.

1. Резистор в цепи переменного тока

Здесь через обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением

.

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Физическая величина называется активным сопротивлением резистора .

2. Конденсатор в цепи переменного тока

Соотношение между амплитудами тока и напряжения :

Ток опережает по фазе напряжение на угол

Физическая величина называется емкостным сопротивлением конденсатора .

3. Катушка в цепи переменного тока

Соотношение между амплитудами тока и напряжения :

.

Ток отстает по фазе от напряжения на угол

Физическая величина называется индуктивным сопротивлением катушки .

Теперь можно построить векторную диаграмму для последовательного -контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через . Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги. Векторная диаграмма для последовательного -контура изображена на рис. 2.3.2.

Рисунок 2.3.3.

Векторная диаграмма на рис. 2.3.2 построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Из рисунка видно, что

откуда следует

Из выражения для видно, что амплитуда тока принимает максимальное значение при условии

или

Явление возрастания амплитуды колебаний тока при совпадении частоты ω колебаний внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом . При резонансе

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной -цепи называется резонансом напряжений . Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов , и (так называемый резонанс токов ).

При последовательном резонансе () амплитуды и напряжений на конденсаторе и катушке резко возрастают:

В § 2.2 было введено понятие добротности -контура:

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в раз превышают амплитуду напряжения внешнего источника.

Рисунок 2.3.4.

Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω для различных значений добротности . Кривые на рис. 2.3.3 называются резонансными кривыми .

Можно показать, что максимум резонансных кривых для контуров с низкой добротностью несколько сдвинуты в область низких частот.

Вынужденные колебания в последовательном колебательном контуре

Краткая теория.

Свободные колебания в последовательном колебательном контуре.

Последовательный колебательный контур (рис. 1) содержит конденсатор емкостью C и катушку индуктивностью L и сопротивлением R. Пусть в момент времени t = 0 на конденсаторе имеется заряд . При разрядке конденсатора через катушку возникнет ток и на основе второго закона Кирхгофа

(1)

Учитывая, что уравнение (1) может быть преобразовано к виду

,(2)
, ,(3)

(aкоэффициент затухания, w0собственная частота контура).

Если , решение уравнения (2)может быть записано в виде:

,(4)

где .

Таким образом, при зависимость заряда на конденсаторе от времени имеет характер затухающих колебаний, частота которых w, называемая частотой свободных колебаний, несколько меньше собственной частоты контура w0. Постоянные qm и j зависят от начальных условий. В рассматриваемом случае можно считать w»w0 и j»0; тогда (4) принимает вид:

.(5)

Закон изменения силы тока можно найти, дифференцируя (5) по времени с учетом, что . Тогда

.(6)

Уравнение (6) дает следующее соотношение между амплитудами тока и напряжения:

,

(7)

волновое или характеристическое сопротивлением контура и является одной из его основных характеристик, так как активное сопротивление контура не влияет на соотношение между Um и Im; оно определяет лишь степень затухания колебаний, т.е. быстроту уменьшения амплитуд с течением времени.

Кроме коэффициента затухания a для характеристики затухающих колебаний пользуются логарифмическим декрементом затухания, который равен натуральному логарифму отношения амплитуд колебаний, взятых через период Т:

.(8)

Важным параметром колебательного контура является добротность Q, характеризующая относительную убыль энергии в процессе колебаний:

.(9)

Энергия теряемая в контуре за один период, согласно закону Джоуля – Ленца, равна , где I – эффективное значение переменного тока. Энергия, запасенная колебательной системой, равна максимальной энергии, накопленной конденсатором или катушкой индуктивности: . Подставляя в (9) выражения для W и WТ, получим:

.(10)

Вынужденные колебания в последовательном колебательном контуре.

Пусть контур подключен к источнику внешней гармонической ЭДС с амплитудой Еm:

.

В соответствии с законом Кирхгофа получаем:

,(11)

Решение уравнения (9) можно получить в виде:

.(12)

Таким образом, при воздействии на контур периодической ЭДС колебательный процесс в нем вначале представляет собой суперпозицию свободных и вынужденных колебаний. Так как свободные колебания имеют затухающий характер, по истечении некоторого времени ими можно пренебречь и считать, что в контуре существуют лишь вынужденные колебания. Чем выше добротность контура, тем медленнее затухают свободные колебания.

Резонансом в последовательном контуре называется такое явление, при котором резко возрастает амплитуда вынужденных колебаний силы тока, реактивная составляющая входного сопротивления контура равна нулю и контур представляет для генератора чисто активную нагрузку. Резонанс в последовательном колебательном контуре называют резонансом напряжений.

Из этого вытекают следующие свойства резонанса в последовательном контуре:

1. При резонансе реактивное сопротивление , поэтому частота генератора

;(13)

но , т.е. резонанс в последовательном контуре происходит при частоте генератора wр равной собственной частоте контура w0. Строго говоря, это не всегда правильно, так как при наличии в контуре сопротивления R собственная частота его w0 отличается, хотя и весьма незначительно, от .

Характер изменения реактивных сопротивлений катушки индуктивности XL, емкости ХС и контура в целом Х от частоты показан на рис. 2. Следует иметь в виду, что на частотах ниже резонансной сопротивление контура носит емкостной характер, а на частотах выше резонансной – индуктивный.

2. Равенство , при условии. что wр = w0= , дает

.(14)

Таким образом, при резонансе индуктивное и емкостное сопротивления контура порознь равны его характеристическому сопротивлению.

Так как при резонансе Х = 0, то полное сопротивление контура:

Отсюда следует, что между амплитудными значениями ЭДС Еm и тока Imp существует зависимость:

.(15)

3. При резонансе ток и ЭДС генератора совпадают по фазе.

4. По формулам (14) и (15) устанавливаем соотношения между резонансными амплитудами напряжений на индуктивности , емкости и ЭДС генератора :

, , ,

(16)

Из выражения (16) следует, что при резонансе в последовательном контуре амплитуды напряжения на индуктивности и емкости равны между собой и каждая из них превышает амплитуду ЭДС генератора в Q раз. Вследствие наличия активного сопротивления в контуре максимум значений , и достигается при несколько различных значениях частот. И чем выше добротность контура, тем ближе эти значения.

Определим зависимость тока в контуре от частоты в относительном масштабе:

.(17)

В случае использования контура в качестве фильтрующего элемента имеет смысл анализировать поведение тока в нем при относительно небольших отклонениях частоты сигнала от резонансной. С учетом этого можно принять, что . Если отклонение частоты от резонансной (расстройку) обозначить через то (17) примет вид

.(18)

Это соотношение является аналитическим описанием резонансной, или амплитудно-частотной, характеристики контура. Из него видно, что значительные токи в контуре возникают лишь при небольших , а следовательно, контур обладает фильтрующими (избирательными) свойствами. Избирательные свойства контура, т.е. способность ослаблять сигналы, частота которых отличается от резонансной, характеризуются полосой пропускания.

Полосой пропускания контура ΔF или ΔΩ (ΔΩ = 2π ΔF) называется область частот вблизи резонансной, на границах которой отношение токов (или напряжений) .

Из соотношения (18) можно получить связь между полосой пропускания, резонансной частотой и добротностью:

,

откуда легко найти, что

или .(19)

Ряд нормированных амплитудно-частотных характеристик контуров, отличающихся только добротностью Q, показан на рис. 3.

Рис. 3

Фазочастотной характеристикой (ФЧХ) называют зависимость фазового сдвига j тока в контуре относительно вызывающей его ЭДС от частоты. Для последовательного контура имеем

.

Работа выполняется с использованием стенда, схема которого изображена на рис 4. Источником внешней ЭДС является генератор звуковой частоты. В контур последовательно включены резистор R переменного сопротивления, катушка индуктивности и конденсатор переменной емкости. Активное сопротивление контураопределяется суммой сопротивления катушки (ее активного сопротивления, измеренного на постоянном токе), резистора и выходного сопротивления генератора. Эффективное значение напряжения на конденсаторе измеряется вольтметром V.

Подключить вольтметр к конденсатору. Емкость конденсатора, сопротивление резистора, выходное напряжение генератора укажет преподаватель. Изменяя частоту f в диапазоне (2…20) кГц, измерить зависимость напряжения на конденсаторе UC от частоты для двух значений сопротивления.

Подключить вольтметр к катушке индуктивности и измерить зависимость напряжения UL от частоты для двух значений сопротивления.

Рис. 4.

1. Для двух сопротивлений контура рассчитайте Q, a, r, ΔF, ΔΩ, wр и fр (fр=wр/2p). Полное активное сопротивление контура равно сумме активного сопротивления катушки, выходного сопротивления генератора и сопротивления резистора. Значения выходного сопротивления генератора и сопротивления резистора, а также емкость конденсатора укажет преподаватель.

2. Снимите зависимости напряжения на конденсаторе UС от частоты f для двух значений сопротивления вблизи резонансной частоты fр. Полученные данные занесите в таблицы 1 и 2.

Таблица 1 и 2 (нарисовать две таблицы)

R= C= L=
f, кГц
UC, В

3. Снимите зависимости напряжения на катушке UL от частоты f для двух значений сопротивления вблизи резонансной частоты fр. Полученные данные занесите в таблицы 3 и 4.

Таблица 3 и 4 (нарисовать две таблицы)

R= C= L=
f, кГц
UC, В

4. По данным таблиц постройте резонансные кривые (см. рис. 5) , .

5. Из графиков определите экспериментальную резонансную частоту fрэксп и полосу пропускания контура ΔFэксп. Полученные результаты сравнить с рассчитанными значениями.

Рис. 5.

Последовательный колебательный контур

Последовательный колебательный контур обозначение на схеме

Последовательный колебательный контур — это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно.

Идеальный последовательный колебательный контур

На схемах идеальный последовательный колебательный контур обозначается вот так:

Реальный последовательный колебательный контур

Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:

С — собственно сама емкость конденсатора

Принцип работы последовательного колебательного контура

Генератор частоты и последовательный колебательный контур

Давайте проведем классический эксперимент, который есть в каждом учебнике по электронике. Для этого соберем вот такую схему:

Генератор (Ген)у нас будет выдавать синус.

Для того, чтобы снять осциллограмму силы тока через последовательный колебательный контур, мы подключим в схему шунтовый резистор с малым сопротивлением в 0,5 Ом и с него уже будем снимать напряжение. То есть в данном случае мы шунт используем для наблюдения силы тока в цепи.

А вот и сама схема в реальности:

Слева-направо: шунтовый резистор, катушка индуктивности и конденсатор. Как вы уже поняли, сопротивление R — это суммарное сопротивление потерь катушки и конденсатора, так как нет идеальных радиоэлементов. Оно «прячется» внутри катушки и конденсатора, поэтому в реальной схеме отдельным радиоэлементом мы его не увидим.

Теперь нам осталось подцепить эту схему к генератору частоты и осциллографу, и прогнать по некоторым частотам, снимая осциллограмму с шунта Uш , а также снимая осциллограмму с самого генератора UГЕН .

С шунта мы будем снимать напряжение, которое у нас отображает поведение силы тока в цепи, а с генератора собственно сам сигнал генератора. Давайте прогоним нашу схемку по некоторым частотам и глянем что есть что.

Влияние частоты генератора на сопротивление колебательного контура

В схеме я взял конденсатор на 1мкФ и катушку индуктивности на 1 мГн. На генераторе настраиваю синус размахом в 4 Вольта. Вспоминаем правило: если в цепи соединение радиоэлементов идет последовательно друг за другом, значит, через них течет одинаковая сила тока.

Красная осциллограмма — это напряжение с генератора частоты, а желтая осциллограмма — отображение силы тока через напряжение на шунтовом резисторе.

Частота 200 Герц с копейками:

Как мы видим, при такой частоте ток в этой цепи есть, но очень слабый

Добавляем частоту. 600 Герц с копейками

Здесь мы уже отчетливо видим, что сила тока возросла, а также видим, что осциллограмма силы тока опережает напряжение. Попахивает реактивным сопротивлением конденсатора.

Добавляем частоту. 2 Килогерца

Сила тока стала еще больше.

Сила тока увеличилась. Заметьте также, что сдвиг фаз стал уменьшаться.

Осциллограммы почти уже сливаются в одну. Сдвиг фаз между напряжением и силой тока становится почти незаметным.

И вот на какой-то частоте у нас сила тока стала максимальной, а сдвиг фаз стал равен нулю. Запомните этот момент. Для нас он будет очень важен.

Ну а давайте далее будем увеличивать частоту. Смотрим, что получается в итоге.

Еще совсем недавно ток опережал напряжение, а сейчас уже стал запаздывать после того, как выровнялся с ним по фазе. Так как ток уже отстает от напряжения, здесь уже попахивает реактивным сопротивлением катушки индуктивности.

Увеличиваем частоту еще больше

Сила тока начинает падать, а сдвиг фаз увеличивается.

Как вы видите, с увеличением частоты, сдвиг приближается к 90 градусов, а сила тока становится все меньше и меньше.

Резонанс последовательного колебательного контура

Давайте подробнее рассмотрим тот самый момент, когда сдвиг фаз был равен нулю и сила тока, проходящая через последовательный колебательный, контур была максимальна:

Это явление носит название резонанса.

Не будем углубляться в теорию высшей математики и комплексных чисел. Дело в том, что в этот самый момент реактивное сопротивление катушки и конденсатора становятся равными, но противоположными по знаку. Поэтому, эти реактивные сопротивления как-бы вычитаются друг из друга, что в сумме дает ноль, и в цепи остается только активная составляющая сопротивления, то есть то самое паразитное сопротивление катушки и конденсатора, или иначе, сопротивление потерь R.

Как вы помните, если у нас сопротивление становится малым, а в данном случае сопротивления потерь катушки и конденсатора очень маленькие, то в цепи начинает течь большая сила тока согласно закону Ома: I=U/R. Если генератор мощный, то напряжение на нем не меняется, а сопротивление становится пренебрежимо малым и вуаля! Ток растет как грибы после дождя, что мы и увидели, посмотрев на желтую осциллограмму при резонансе.

Формула Томсона (резонанса) для последовательного колебательного контура

Если при резонансе у нас реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора XL=XC , то можно уравнять их реактивные сопротивления и уже отсюда вычислить частоту, на которой произошел резонанс. Итак, реактивное сопротивление катушки у нас выражается формулой:

Реактивное сопротивление конденсатора вычисляется по формуле:

Приравниваем обе части и вычисляем отсюда F:

В данном случае мы получили формулу резонансной частоты. Это формула по другому называется формулой Томсона, как вы поняли, в честь ученого, который ее вывел.

Давайте по формуле Томсона посчитаем резонансную частоту нашего последовательного колебательного контура. Для этого я буду использовать свой RLC-транзисторметр.

Замеряем индуктивность катушки:

И замеряем нашу емкость:

Высчитываем по формуле нашу резонансную частоту:

У меня получилось 5, 09 Килогерц.

С помощью регулировки частоты и осциллографа я поймал резонанс на частоте 4,78 Килогерц (написано в нижнем левом углу)

Спишем погрешность в 200 с копейками Герц на погрешность измерений приборов. Как вы видите, формула Томпсона работает.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:

и конденсатор в 1000 пФ

Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим ;-). Давайте сначала посчитаем резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:

Размах амплитуды 4 Вольта

Хотя на генераторе частоты размах более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.

Теперь небольшой прикол 😉

Вот этот сигнал мы подаем на наш последовательный колебательный контур:

Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:

Смотрим напряжение на конденсаторе:

Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!

Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:

Народ! Халява. Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14, и цепляю поочередно к ним лампочку:

Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!

Объяснение резонанса напряжения

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC . А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.

Добротность последовательного колебательного контура

Ну раз уж мы начали задвигать тему колебательных контуров, поэтому мы не можем обойти стороной такой параметр, как добротность колебательного контура. Так как мы уже провели некоторые опыты, то нам будет проще определить добротность, исходя из амплитуды напряжений. Добротность обозначается буквой Q и вычисляется по первой простой формуле:

Давайте посчитаем добротность в нашем случае.

Так как цена деления одного квадратика по вертикали 2 Вольта, следовательно, амплитуда сигнала генератора частоты 2 Вольта.

А это то, что мы имеем на зажимах конденсатора или катушки. Здесь цена деления одного квадратика по вертикали 5 Вольт. Считаем квадратики и умножаем. 5х4=20 Вольт.

Считаем по формуле добротности:

Q=20/2=10. В принципе немного и не мало. Пойдет. Вот так вот на практике можно найти добротность.

Есть также вторая формула для вычисления добротности.

R — сопротивление потерь в контуре, Ом

L — индуктивность, Генри

С — емкость, Фарад

Зная добротность, можно легко найти сопротивление потерь R последовательного колебательного контура.

Также хочу добавить пару слов о добротности. Добротность контура — это качественный показатель колебательного контура. В основном его стараются всегда увеличить различными всевозможными способами. Если взглянуть на формулу выше, то можно понять, для того, чтобы увеличить добротность, нам надо как-то уменьшить сопротивление потерь колебательного контура. Львиная доля потерь относится к катушке индуктивности, так как она уже конструктивно имеет большие потери. Она намотана из провода и в большинстве случаев имеет сердечник. На высоких частотах в проводе начинает проявляться скин-эффект, который еще больше вносит потери в контур.

Видео на тему «Как работает колебательный контур. Резонанс»:

Резюме

Последовательный колебательный контур состоит из катушки индуктивности и конденсатора, соединенных последовательно.

Катушка и конденсатор имеют паразитные омические потери, так как не являются идеальными радиоэлементами. Сумма этих потерь называется сопротивлением потерь R последовательного колебательного контура.

На какой-то частоте реактивное сопротивление катушки становится равным реактивному сопротивлению конденсатора и в цепи последовательного колебательного контура наступает такое явление, как резонанс.

При резонансе реактивные сопротивления катушки и конденсатора хоть и равны по модулю, но противоположны по знаку, поэтому они вычитается и в сумме дают ноль. В цепи остается только активное сопротивление потерь R.

При резонансе сила тока в цепи становится максимальной, так как сопротивление потерь катушки и конденсатора R в сумме дают малое значение.

При резонансе напряжение на катушке равняется напряжению на конденсаторе и превышает напряжение на генераторе.

Коэффициент, показывающий во сколько раз напряжение на катушке либо на конденсаторе превышает напряжение на генераторе, называется добротностью Q последовательного колебательного контура и показывает качественную оценку колебательного контура. В основном стараются сделать Q как можно больше.

На низких частотах колебательный контур имеет емкостную составляющую тока до резонанса, а после резонанса — индуктивную составляющую тока.


источники:

http://lektsii.org/6-77095.html

http://www.ruselectronic.com/posledovatelnyj-kolebatelnyj-kontur/