Уравнение потери напора на трение

Основы гидравлики

Гидравлические сопротивления и их расчет

Виды гидравлических сопротивлений

При движении жидкости в трубе между нею и стенками трубы возникают дополнительные силы сопротивлении, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается следующим слоям, отстоящим далее от поверхности трубы, причем скорость движения частиц по мере удаления их от оси трубы постепенно уменьшается.
Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению жидкости, и параллельна направлению движения. Это и есть силы гидравлического трения (сопротивления гидравлического трения) .

Для преодоления сопротивления трения и поддержания равномерного поступательного движения жидкости необходимо, чтобы на жидкость действовала сила, направленная в сторону ее движения и равная силе сопротивления, т. е. необходимо затрачивать энергию. Энергию или напор, необходимый для преодоления сил сопротивления, называют потерянной энергией или потерянным напором.
Потери напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока (линейные потери напора) и обозначаются обычно hтр .

Однако трение является не единственной возможной причиной, вызывающей потери напора. Резкое изменение сечения также оказывает сопротивление движению жидкости (так называемое сопротивление формы) и вызывает потери энергии. Существуют и другие причины, вызывающие потери напора, например внезапное изменение направления движения жидкости.
Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы) , называют местными потерями напора или потерями напора на местные сопротивления и обозначаются через hм .

Таким образом, потери напора при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.:

Потери напора при равномерном движении жидкости в трубах

Найдем общее выражение для потерь напора на трение при равномерном движении жидкости в трубах, справедливое как для ламинарного, так и для турбулентного режимов.

При равномерном движении величина средней скорости и распределение скоростей по сечению остаются неизменными по всей длине трубопровода. Поэтому равномерное движение возможно лишь в трубах постоянного сечения S , так как в противном случае будет изменяться средняя скорость в соответствии с уравнением:

v = Q/S = const .

Равномерное движение имеет место в прямых трубах или в трубах с очень большим радиусом кривизны R (прямолинейное движение) , так как в противном случае средняя скорость может изменяться по направлению.
Кроме того, условие неизменности характера скоростей жидкости по живому сечению можно записать в виде α = const , где αкоэффициент Кориолиса. Последнее условие может быть соблюдено лишь при достаточном удалении рассматриваемого участка потока от входа в трубу.

Если выделить на участке трубы с равномерно текущей жидкостью два произвольных сечения 1 и 2, то потери напора при перемещении жидкости между этими сечениями можно описать при помощи уравнения Бернулли:

где:
z1 и z2 – перепад высот между центрами соответствующих сечений;
p1 и p2 – давление жидкости в соответствующих сечениях;
γ – удельная плотность жидкости, γ = gρ ;
hтр – величина потерянной энергии (потери на трение).

Из этой формулы выразим величину потерянной энергии hтр :

Это выражение называют уравнением равномерного движения жидкости в трубопроводе. Если труба расположена горизонтально, т. е. перепад высот между ее сечениями отсутствует, то уравнение примет упрощенный вид:

Формула Дарси-Вейсбаха для равномерного движения жидкости в трубах

При равномерном движении жидкости в трубах потери напора на трение по длине hл определяют по формуле Дарси-Вейсбаха , которая справедлива для круглых труб, как при турбулентном, так и при ламинарном режиме. Эта формула устанавливает зависимость между потерями напора hл , диаметром трубы d и средней скоростью потока жидкости v:

hл = λ v 2 /2gd ,

где:
λ – коэффициент гидравлического трения (величина безразмерная);
g – ускорение свободного падения.

Для труб произвольного сечения в формуле Дарси-Вейсбаха используют понятие приведенного или эквивалентного диаметра сечения трубы по отношению к круглому сечению.

В некоторых случаях используют также формулу

hл = v 2 l/C 2 R ,

где:
v – средняя скорость потока в трубе или канале;
l – длина участка трубы или канала;
R – гидравлический радиус потока жидкости;
С – коэффициент Шези, связанный с коэффициентом гидравлического трения λ зависимостью: С = √(8g/λ) или λ = 8g/С 2 . Размерность коэффициента Шези – м 1/2 /с.

Для определения коэффициента гидравлического трения при различных режимах и условиях движения жидкости применяют различные способы и эмпирические зависимости, в частности, график И. И. Никурадзе , формулы П. Блазиуса , Ф. А. Шевелева (для гладких труб) и Б. Л. Шифринсона (для шероховатых труб) . Все эти способы и зависимости опираются на критерий Рейнольдса Re и учитывают состояние поверхности труб.

Потери напора из-за местных сопротивлений

Как уже указывалось выше, местные потери напора обусловлены преодолением местных сопротивлений, создаваемых фасонными частями, арматурой и прочим оборудованием трубопроводных сетей, а также изменением направления потока жидкости (изгибы труб, колена и т. п.) .
Местные сопротивления вызывают изменение величины или направления скорости движения жидкости на отдельных участках трубопровода, что связано с появлением дополнительных потерь напора.
Движение в трубопроводе при наличии местных сопротивлений является неравномерным.

Потери напора в местных сопротивлениях hм (местные потери напора) вычисляют по формуле Вейсбаха :

hм = ξ v 2 /2g ,

где:
v – средняя скорость в сечении, расположенном ниже по течению за местным сопротивлением;
ξ – безразмерный коэффициент местного сопротивления, определяемый для каждого вида местного сопротивления по справочным таблицам или установленным зависимостям.

Потери напора при внезапном расширении трубопровода находят по формуле Борда :

hвн.р. = ( v 1v 2) 2 \2g = ξвн.р.1 v 1 2 /2g = ξвн.р.2 v 2 2 /2g ,

где v1 и v2 – средние скорости течения до и после расширения.

При внезапном сужении трубопровода коэффициент местного сопротивления определяется по формуле:

где ε — коэффициент сжатия струи, определяемый, как отношение площади сечения сжатой струи в узком трубопроводе к площади сечения узкой трубы. Этот коэффициент зависит от степени сжатия потока n = S2/S1 и может быть найден по формуле А. Д. Альтшуля: ε = 0,57 + 0,043/(1,1 — n) .
Значение коэффициента ε при расчетах трубопроводов берут из справочных таблиц.

При резком повороте трубы круглого поперечного сечения на угол α коэффициент сопротивления можно найти по формуле:

где:
ξ90˚ — значение коэффициента сопротивления для угла 90˚, которое для точных расчетов принимается по справочным таблицам, а для приближенных расчетов принимается равным ξ90˚ = 1.

Аналогичными методами осуществляют подбор или расчет коэффициентов сопротивления для других видов местных сопротивлений – резкое или постепенное сужение (расширение) трубопровода, повороты, входы и выходы из трубы, диафрагмы, запорные устройства, сварочные швы и т. п.

Приведенные выше формулы применимы для турбулентного режима движения жидкостей с большими числами Рейнольдса, когда влияние вязкости жидкости незначительно.
При движении жидкости с малыми числами Рейнольдса (ламинарный режим) величина местных сопротивлений мало зависит от геометрических характеристик сопротивления и скорости потока, на их величину большее влияние оказывает величина числа Рейнольдса.
В таких случаях для расчета коэффициентов местных сопротивлений применима формула А. Д. Альтшуля :

где:
А – нестесненное сечение трубопровода;
ξэкв – значения коэффициента местного сопротивления в квадратичной области;
Re — число Рейнольдса.

Значения параметра А и некоторых местных сопротивлений приводятся в справочных таблицах и используются при практических расчетах трубопроводов, предназначенных для движения жидкостей в ламинарном режиме.

Расчет гидравлических систем.

Любой расчет гидравлических систем выполняется на определенной основе, в этой статье мы рассмотрим методы, и формулы на которых базируются расчеты гидравлических систем. Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода.

Потери напора на трение .

Всем известно, что при движении жидкости по трубопроводу возникают постери напора на трение. В случае, когда движении жидкости в трубах равномерное, то потери давления на трение как при ламинарном, так и при турбулентном режимах движения можно рассчитать по формуле Дарси–Вейсбаха:

D ρ тр = λ· l / d · ρ · V 2 /2

  • l – коэффициент гидравлического трения;
  • l –длина трубопровода;
  • d – диаметр трубопровода;
  • r – плотность жидкости;
  • V – средняя скорость течения жидкости.

Коэффициент гидравлического трения будет зависеть от режима движения жидкости, значения критерия Рейнольдса:

Re = Vd/ν

А так же коэффициент гидравлического трения будет зависеть от состояния стенок трубы, которое характеризуется относительной шероховатостью:

D ̅ = D ,/d ,

  • Dэ – эквивалентная равномерно-зернистая шероховатость (то есть такая высота неровностей, которые образовани песчинками одинакового размера, которая при расчете дает одинаковое с действительной шероховатостью значение коэффициента гидравлического трения).

При ламинарном режиме течения жидкости коэффициент гидравлического трения можно рассчитать по формуле:

λ = 64/Re .

При турбулентном режиме течения жижкости весь диапазон значений чисел Рейнольдса, в зависимости от относительной шероховатости, необходимо разделить на области, каждой из которых будет соответствовать своя формула для расчета коэффициента гидравлического трения:

область гидравлически гладких труб 2300 ≤ Re ≤ 10 √D:

1. λ = 0.3164/Re 0.25 – формула Блазиуса;

2. 10/D̅ ≤ Re ≤ 500√D – переходная область;

3. λ = 0.11 · (D̅ + 68/Re) 0.25 – формула А.Д. Альтшуля;

4. Re > 500√D – квадратичная область;

5. λ = 0.11 · D -0.25 – формула Б.Л. Шифринсона.

Если жидкость будет протекать по трубам, форма поперечного сечения которых не будет круглой, то в приведенных выше формулах будет использоваться вместо d эквивалентный диаметр:

d, = 4S/ П ,

  • где S – площадь поперечного сечения трубы; П – полный смоченный периметр трубы.

Коэффициент гидравлического трения при ламинарном течении в трубах различной формы можно рассчитать по формуле

λ = A/Re ,

  • где А – коэффициент, численное значение которого зависит от формы поперечного сечения трубы.

Сифон — это соединяющий два резервуара трубопровод, часть которого находится выше уровня жидкости в напорном резервуаре. Допустимое возвышение верхней точки сифона вычисляют по формуле

h o = p α — D p ’/ ρg

  • где Dp– потеря давления на участке от напорного резервуара до верхней точки сифона.

Минимально допустимое давление в верхней точке сифона должно быть выше давления насыщения при данной температуре.

Пропускная способность трубопроводов в период эксплуатации снижается. Вследствие коррозии и образования отложений в трубах шероховатость их увеличивается, что в первом приближении можно оценить по формуле:

D , = D 0 + αt ,

  • где Dо – абсолютная шероховатость новых труб, мм;
  • Dt – абсолютная шероховатость через t лет эксплуатации, мм;
  • a – коэффициент, характеризующий быстроту возрастания шероховатости, мм/год.

Местные потери давления в трубах .

Местные сопротивления, к которым относится арматура, фасонные части трубопроводов и прочее оборудование, могут вызывать изменения величины и (или) направления скорости движения жидкости на определенных участках трубопровода, что неизбежно приводит к потерям давления в этих трубах. Потери давления определяют по формуле Вейсбаха:

D p ж = ζρ V 2 /2 .

Значения коэффициентов местных сопротивлений V зависят от конфигурации местного сопротивления и режима течения жидкости перед ним.

При резком сужении трубопровода (резком изменении площади проходного сечения от S1 до S2) коэффициент местного сопротивления рассчитывается по формуле:

ζ o = (1/G – 1) 2 ,

  • где e – коэффициент сжатия струи, который можно определить по формуле А.Д. Альтшуля:

G = 0.57 + 0.043/(1.1 – n) , где: n = S 2 /S 1 .

Коэффициент местного сопротивления диафрагмы, которая располагается внутри трубы постоянного сечения (отнесенный к сечению трубопровода):

ζ д = (1 /n д G – 1) 2 ,

  • где nд = So / S – отношение площади отверстия диафрагмы So к площади сечения трубы S.

При движении жидкости с малыми числами Рейнольдса коэффициенты местных сопротивлений ориентировочно определяют по формуле А.Д. Альтшуля:

ζ = A / Re + ζ L

  • где ζL – значение коэффициента местного сопротивления в квадратичной области; Re – число Рейнольдса, отнесенное к нестесненному сечению трубопровода.

В случаях, когда расстояние между отдельными местными сопротивлениями довольно велико для того, чтобы искажение эпюры скоростей, вызванное одним из них, не сказывалось на следующем, потери давления во всех местных сопротивлениях суммируются. Для этого необходимо, чтобы местные сопротивления отстояли друг от друга на расстояние, превышающее lвл, определяемое по формулам:

Определение потерь напора на трение

Потеря напора на преодоление трения hT по длине трубопровода круглого сечения при любом режиме течения определяется по формуле Дарси-Вейсбаха:

(4.12)

Из (4.11) следует, что

Тогда потери давления будут

(4.13)

Если скорость w выразить через объемный расход и площадь сечения из уравнения (4.1)

(4.14)

то уравнение (4.12) примет вид:

(4.15)

В наклонном трубопроводе:

(4.16)

(4.17)

+ — когда сумма участков подъема по высоте больше суммы участков спуска;

— когда наоборот.

где l– длина трубопровода, м;

d— внутренний диаметр, м;

ρ плотность жидкости, кг/м 3 ;

ΔZ— разность геодезических отметок начала и конца трубопровода, м;

g— ускорение силы тяжести, м/с 2 ;

λ— коэффициент гидравлического сопротивления, который в общем случае зависит от числа Рейнольдса Re и относительной шероховатости стенки трубопровода

(4.18)

где ε– относительная шероховатость.

(4.19)

где Δ– абсолютная эквивалентная шероховатость выбирается по таблице, мм;

d- внутренний диаметр трубы, мм.

Абсолютная эквивалентная шероховатость – это такая высота шероховатости, при которой в квадратичной зоне сопротивления потери напора равны потерям напора для данной естественной шероховатости трубы.

Для ламинарного режима движения (Rе Rекр) различают три зоны сопротивления.

1. Зона гидравлически гладких труб ( ) :

— (4.25)

формула Блазиуса, используемая при Rе ≤ 10 5 . Здесь сопротивление шероховатых и гладких труб одинаково.

В зависимости от скорости течения и вязкости жидкости одна и та же труба может быть гидравлически гладкой и гидравлически шероховатой.

2. Зона шероховатых труб или смешанного трения

( ):

(4.26)

3. Зона вполне шероховатых труб или квадратичная зона

( ):

(4.27)

Для нефтепроводов наиболее характерны режимы гладкого или смешанного трения.

Разновидностью формулы Дарси-Вейсбаха, часто применяемой при технологических расчетах трубопроводов, является формула академика Лейбензона:

(4.28)

где Q и ν — соответственно объемный расход и кинематическая вязкость перекачиваемой жидкости;

гдеβ, А, m— коэффициенты, зависящие от режима течения жидкости.

Формула (5.28) в явной форме выражает зависимость h от Q и получается из выражения (5.12) при условии, что λопределяется выражением вида

. (4.29)

Формулы для расчета коэффициента гидравлического сопротивления в зависимости от режима течения приведены в табл. 4.1.

Потеря напора на единицу длины трубопровода называется гидравлическим уклоном:

. (4.30)

Для наглядности и представления о гидравлическом уклоне сделаем построение гидравлического треугольника: отложим от начальной А’ и конечной B’ точек на профиле трассы трубопровода статические (пьезометрические) напоры и и концы полученных отрезков соединим прямой AB. Эта прямая называется линией падения напора или линией гидравлического уклона. Она показывает характер распределения напора по длине трубопровода.

Из построения следует, что гидравлический уклон является тангенсом угла наклона этой прямой к горизонту:

(4.31)

то есть i = const.

Величина и характеризует потери напора на трение в трубопроводе и показывает, что разность статических напоров целиком затрачивается на преодоление гидравлических сопротивлений, возникающих при течении жидкости по трубопроводу.


источники:

http://www.calc.ru/Raschet-Gidravlicheskikh-Sistem.html

http://helpiks.org/3-53736.html