Уравнение предельного равновесия для сыпучих

Уравнения предельного равновесия для сыпучих и связных грунтов

Угол наибольшего отклонения. При действии на поверхность грунта местной нагрузки в любой точке грунта М для любой пло­щадки тп, проведенной через эту точку под углом а (рис. 64, а), возникнут нормальные и касательные напряжения. К нормальным напряжениям при математическом рассмотрении вопроса следует отнести и силы связности, суммарно оцениваемые [см. формулу (11.23′)] давлением связности рг. Тогда на площадку тп (рис. 64, а) будут действовать нормальное напряжение оа+ре и каса­тельное Та .

При изменении угла а величина составляющих напряжений так­же будет меняться и, если касательные (сдвигающие) напряжения достигнут определенной доли от нормальных, то, как показывают опыты на сдвиг, произойдет скольжение одной части грунта по дру­гой.

Таким образом, условием предельного равновесия грунта в дан­ной точке будет

Это отношение равно тангенсу угла отклонения 9, т. е. угла, на ко­торый отклоняется полное напряжение для площадки о от нормали к этой площадке.

Рис. 64. Круги предельных напряжений:

а — схема напряжений в данной точке; б— диаграмма сдвига для сыпучих грунтов; в — то же, для грунтов связных

Так как через заданную точку можно провести множество пло­щадок, то, очевидно, необходимо отыскать самую невыгодную пло­щадку, для которой будет существовать максимальный угол откло­нения бтах- Тогда

Условия предельного равновесия. Для сыпучих грунтов согласно диаграмме сдвига (см. рис. 64, б) максимальное значение угла от­клонения бтах будет тогда, когда огибающая ОЕ коснется круга предельных напряжений.

Как было показано ранее (см. гл. II, § 4) и что вытекает из гео­метрических соотношений, поставленному условию удовлетворяет

120 равенство (11.24):

где 01 и 02 — главные напряжения;

Ф — угол внутреннего трения грунта.

Это и есть условие предельного равновесия для сыпучих грун­тов. Ему можно придать несколько другой вид после несложных тригонометрических преобразований, а именно

1 — 51П ф 1 + 51Пф

Последнее выражение весьма широко используется в теории давления грунтов на ограждения, причем знак «минус» (в скобках) соответствует так называемому активному давлению, а знак «плюс» — пассивному сопротивлению сыпучих грунтов.

Условию предельного равновесия для сыпучих грунтов иногда придают иной вид, выразив главные напряжения 01 и 02 через со­ставляющие напряжения о2, ау и хуг (для плоской задачи). Тогда будем иметь следующее выражение, тождественное зависимости (11.24):

(0у + ог) У> 1уг составляющие напряжении;

у — объемный вес грунта.

В этих двух дифференциальных уравнениях три неизвестных (ог, оу и хуг); таким образом, задача является (без добавочных усло­вий) статически неопределимой. Если же добавить к этим двум уравнениям третье, например, (П.251У), то получим замкнутую систему трех уравнений с тремя неизвестными, но для предельного на­пряженного состояния, так как уравнение (П.251У) является усло­вием предельного равновесия:

Таким образом, задача в общей постановке статически опреде­лима.

Решение дифференциаль­ных уравнений равновесия (а1) и (аг) совместно с усло­вием предельного равнове­сия (аз) в дальнейшем полу­чено (проф. В. В. Соколов­ским, 1942 г.) как системы уравнений гиперболического типа.

Пространственная задача имеет замкнутую систему уравнений (статиче­ски определимую) только для случая осевой симмет­рии.

Для осесимметричной за­дачи, воспользовавшись ци­линдрической системой ко­ординат (г, т>) и приняв обо­значения составляющих на­пряжений по рис. 65, имеем следующую систему уравне­ний равновесия:

Рис. 65. Схема пространственной

напряжении в случае осесимметричной за­дачи

Занятие 2. ПРЕДЕЛЬНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ И ПРЕДЕЛЬНОЕ РАВНОВЕСИЕ СЫПУЧИХ ТЕЛ

Скачать:

Сыпучее тело, как правило, подчиняется нелинейному закону упругости и испытывает структурные деформации. Изучение поведения сыпучего тела представляет собой сложную задачу, которую обычно заменяют более простой: в которой деформации не рассматриваются совсем, а напряженное состояние принимается таким, какое бывает в начальный момент движения сыпучего тела, когда в каждой точке сыпучего тела возникает сдвиг. Такое напряженное состояние называется предельным.

Решение задачи основывается на приближенном численном решении исходных уравнений предельного равновесия:
для плоской задачи: ΣX = 0; ΣZ = 0; ΣМ = 0; после преобразований:

Однако, так же, как и в механике твердых тел, в механике сыпучих должен быть установлен критерий для характеристики напряженного состояния, при котором происходит разрушение или наступает текучесть. Этот критерий должен дать возможность составить дополнительные уравнения, которые в сочетании с дифференциальными уравнениями равновесия позволят определить неизвестные величины нормальных и касательных напряжений в сыпучем теле.

Этот критерий заключается в следующем: предполагается, что сыпучее тело целиком находится в предельном напряженном состоянии и в любой его точке выполняется условие предельного напряженного состояния Кулона-Мора:

Мы видим, что условия равновесия рассматриваются в совокупности с условием, характеризующим предел прочности сыпучего тела. Построенную на этой основе теорию называют теорией предельного равновесия.

Вспомним, что через каждую точку напряженного тела можно провести три (для плоской задачи – две) взаимно перпендикулярные плоскости, по которым касательные напряжения отсутствуют, а нормальные имеют экстремальные значения. Такие плоскости называются главными площадками, а действующие по ним нормальные напряжения – главными нормальными напряжениями σ1 ;σ3

Максимальные касательные напряжения действуют под углом 45 к главным площадкам (рис. 1), и для твёрдых тел по этим площадкам может произойти сдвиг, если касательные напряжения превзойдут определенный предел. Для сыпучих же тел (где сопротивление сдвигу определяется не только величиной скрепления между частицами, но и величиной действующего сжимающего нормального напряжения), опасными в отношении сдвига будут не те площадки, по которым действуют наибольшие τ, а те, для которых отношение τ/σ (являющееся тангенсом угла θ отклонения напряжения от нормали) окажется наибольшим.

Здесь θ – угол отклонения равнодействующей полного напряжения от нормали к площадке.

Решение этой сложной задачи приведено во многих источниках [ 5, 6, 13 ] и сводится к тому, что сдвиг произойдет в том случае, если указанный угол θ достигнет величины угла внутреннего трения φ. При этом площадки скольжения будут иметь определенные углы α наклона к линиям действия главных напряжений.

Здесь α – угол наклона площадки скольжения к главной площадке.

Площадки скольжения расположены симметрично по отношению к направлению действия главных напряжений и составляют с направлением действия большего главного напряжения угол 45 – φ/2 (рис. 2).

Если во всех точках сыпучего тела, образующих некоторую поверхность, наступает состояние предельного равновесия, то эта поверхность называется поверхностью скольжения. При этом весь объём, ограниченный этой поверхностью, и отделенный ею от остальной части сыпучего тела, будет находиться в состоянии предельного равновесия (решение Кулона).

Если же состояние предельного равновесия наступает во всех точках какого-либо объёма сыпучего тела, то такое состояние называется предельным напряженным состоянием (решение Соколовского). При этом в данном объеме сыпучего тела возникает бесчисленное множество поверхностей скольжения.

Иллюстрация приведенных рассуждений – графическое изображение напряжённого состояния сыпучего тела.

Круговой график напряжений (круг Мора)

В механике сыпучих сред наряду с аналитическими методами решения задач очень часто применяют графические – остроумные и замечательные.

Вычисление напряжений, действующих по наклонным площадкам в какой-либо точке, может быть заменено следующим графическим построением (рис. 3).

1. В системе прямоугольных координат σ и τ на оси σ в избранном масштабе напряжений откладываются отрезки ОА и ОВ, изображающие величины главных напряжений;

2. На отрезке АВ, равном разности σ1 и σ3, как на диаметре, строят окружность;

3. Для нахождения нормального и касательного напряжений, действующих по площадке, отклоняющейся от главной площадки на угол α*, нужно построить угол α* при точке В. Координаты точки D соответствуют нормальным и касательным напряжениям. Угол отклонения θ равнодействующей полного напряжения по площадке от нормали к ней выражается на чертеже углом, образуемым с осью σ секущей OD;

4. Для предельного равновесия сыпучего тела этот угол соответствует углу внутреннего трения φ. Из чертежа следует, что α1 = 45° — φ/2, а α2 = 45° + φ/2. Таким образом, эти углы определяют направление площадок скольжения.

Так как предельное равновесие в какой-либо точке сыпучего тела наступает в том случае, если для двух площадок, проходящих через эту точку, будет выполняться условие α = 45° ± φ/2, то прямая OD’, проведенная под углом φ к оси σ, должна быть касательной к окружности в тех её точках, которые соответствуют данным площадкам (рис. 3).

Уравнение предельного равновесия для сыпучих и связных грунтов

УУ* \ 4\ ___■—7
Втая = Я> // / V-
\
\ Л \
и /б
А быс

Угол наибольшего отклонения. При действии на поверхность грунта местной нагрузки в любой точке грунта М (рис. 4.4, а) для любой площадки mn, проведенной через эту точку пол углом α, возникнут нормальные и касательные напряжения. К нормальным напряжениям при математическом рассмотрении вопроса следует отнести и силы связности; суммарно оцениваемые давлением связности ре. Тогда на площадку mn (рис. 4.4, а) будут действовать нормальное напряжение σα + ре и касательное τα.

Рис. 4.4. Круги предельных напряжений: а – схема напряжений в данной точке; кривые сдвига для сыпучих (б) и связных (в) грунтов

При изменении угла α величины составляющих напряжений также будут меняться, и если касательные (сдвигающие) напряжения достигнут определенной доли от нормальных, то, как показывают опыты на сдвиг, произойдет скольжение одной части грунта по другой.

Таким образом, условием предельного равновесия грунта в данной точке будет

Если f — величина постоянная, то в предельном состоянии она представляет собой тангенс угла наклона прямолинейной огибающей кругов предельных напряжений (рис. 4.4, б,в).

С другой стороны, согласно рис. 4.4, а

Это отношение равно тангенсу угла отклонения Θ, т. е. угла, на который отклоняется полное напряжение для площадки σ от нормали к этой площадке.

Так как через заданную точку можно провести множество площадок, то, очевидно, необходимо отыскать самую невыгодную площадку, для которой будет существовать максимальный угол отклонения Θmax. Тогда

Условия предельного равновесия. Для сыпучих грунтов согласно диаграмме сдвига (рис. 4.4, б) максимальное значение угла отклонения Θmax будет тогда, когда огибающая ОЕ коснется круга предельных напряжений.

Из геометрических соотношений вытекает, что поставленному условию удовлетворяет равенство:

где σ1 и σ2 —главные напряжения; φ — угол внутреннего трения грунта.

Это и есть условие предельного равновесия для сыпучих грунтов. Ему можно придать несколько другой вид после несложных тригонометрических преобразований, а именно

Последнее выражение весьма широко используется в теории давления грунтов на ограждения, причем знак минус (в скобках) соответствует так называемому активному давлению, а знак плюс – пассивному сопротивлению сыпучих грунтов.

Условию предельного равновесия для сыпучих грунтов иногда придают иной вид, выразив главные напряжения σ1 и σ2 через составляющие напряжения σz, σy и τzy (для плоской задачи). Тогда будем иметь выражение:

Для связных грунтов, подобно предыдущему, пользуясь кривой предельных напряжений (рис. 4.4,в), получим условие предельного равновесия в виде

(2.25)

где с—сцепление грунта, определяемое как начальный параметр огибающей кругов предельных напряжений, то уравнение (2.25) может быть представлено в виде

Последняя формула широко используется в задачах теории предельного равновесия.

Условие предельного равновесия в составляющих напряжениях σz, σy и τzy для связных грунтов имеет следующий вид:

Отметим, что круг предельных напряжений дает возможность определить направления площадок скольжения для любой заданной точки.

Если соединить точку касания предельной прямой ОЕ (рис. 4.4, в) с концом отрезка, изображающего в масштабе σ2 (точка А), то направление ЕА определит направление площадки скольжения. По рис. 4.4, в

Таким образом, в условиях предельного равновесия площадки скольжения будут наклонены под углом ±( 45°+ φ/2)к направлению площадки наибольшего главного напряжения, или, что то же самое, под углом ±(45°—φ/2) к направлению главного напряжения σ1.

Дата добавления: 2015-01-29 ; просмотров: 276 ; Нарушение авторских прав


источники:

http://www.zimbelmann.ru/education/solid-and-granular-media/lessons/lesson_4.html

http://lektsii.com/1-91394.html

Читайте также:
  1. Адиабатический процесс. Уравнение Пуассона.
  2. Анализ инженерно-геологических условий, анализ инженерных свойств грунтов.
  3. Бегущие волны описываются [1] волновым уравнением
  4. Безусловное торможение. Сущность внешнего и запредельного торможения. Условное торможение, его виды.
  5. Билет. Условия равновесия совершенно-конкурентной фирмы в долгосрочном периоде.
  6. Бюджетные ограничения. Изменение покупательной способности потребителя. Условие потребительского равновесия
  7. В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  8. Введение Задача курса механики грунтов.
  9. Величины ∆G , ∆F, ∆μ (и все их вариации), характеризующие меру отклонения системы от равновесия, называются движущей силой кристаллизации.
  10. Взаимосвязь между различными константами равновесия.