Уравнение при распределенная нагрузка по всей балке

Расчет балки на действие равномерно распределенной нагрузки

Как правило под термином «балка» по умолчанию подразумевается однопролетный стержень постоянного по длине сечения, без консолей, на двух шарнирных опорах, т.е. статически определимый. Определение термина «распределенная (равномерно распределенная) нагрузка» приводится отдельно. Опять же умолчанию подразумевается, что нагрузка к балке приложена перпендикулярно нейтральной оси и действует по всей длине балки. Пример расчета такой балки мы ниже и рассмотрим.

Отмечу, что для опытного инженера-строителя расчет балки на действие равномерно распределенной нагрузки больших проблем не представляет, тем более, если значения и нагрузки и длины пролета выражены целыми однозначными цифрами. Как он это делает? Сейчас узнаем.

1. Однопролетная балка постоянного по длине сечения на двух шарнирных опорах А и В, без консолей, длиной l = 4.6 м. Балка расположена горизонтально.

2. Равномерно распределенная нагрузка q = 3.2 кН приложена перпендикулярно к нейтральной оси балки по всей длине балки.

Вот собственно и все, что следует знать на первом этапе расчета — определении максимальных напряжений в поперечном сечении балки. И да, длина балки может измеряться кроме метров в сантиметрах, миллиметрах, дюймах, футах и т.д. Нагрузка может также обозначаться другими литерами, измеряться в килограммах, грамах, тоннах пудах, фунтах и т.д. — принципиального значения это не имеет и на методику расчета никак не влияет.

Если теоретические основы расчета вас не интересуют, а вы просто хотите рассчитать свою балку, то можете воспользоваться калькулятором для данной расчетной схемы (в части определения требуемых параметров сечения этот калькулятор только для деревянных балок, со временем будет и для стальных, а может и для железобетонных).

Далее возможны 2 варианта расчета:

1. Упрощенный, по готовым формулам, которые приводятся буквально в каждом справочнике по сопромату. Для человека, занимающегося частным строительством и желающего просчитать ту или иную балку, такой расчет, самое то.

2. Классический, основанный на уравнениях равновесия системы и методе начальных параметров. Такой расчет чаще всего требуется от студентов. Но и людям, желающим узнать, откуда взялись те или иные формулы, пример такого расчета также будет полезен.

Рассмотрим эти варианты более подробно.

1. Упрощенный расчет (по готовым формулам)

Расчет производится по формулам расчетной схемы 2.1 для шарнирной балки.

1.1 Определение опорных реакций:

А = B = ql/2 = 3.2·4.6/2 = 7.36 кН (671.1)

Соответственно максимальная поперечная сила, действующая в поперечных сечениях балки будет «Q» = 7.36 кН. Действовать эта поперечная сила будет на опорах балки

1.2. Определение максимального изгибающего момента:

Максимальный изгибающий момент будет действовать посредине пролета балки и он составит:

М = ql2/8 = 3.2·4.6 2 /8 = 8,464 кНм (671.2)

1.3. Подбор сечения балки:

3.1 Для деревянной балки с расчетным сопротивлением R = 13 МПа (13000 кПа) требуемый момент сопротивления составит:

Wтр = M/R = 8.464/13000 = 0.000651077 м 3 (651.077 см 3 ) (671.3.1)

Как правило поперечные сечения деревянных балок имеют прямоугольную форму. Момент сопротивления прямоугольного сечения определяется по следующей формуле:

W = bh 2 /6 (671.3.2)

Дальше возможны различные варианты, например при высоте сечения балки h = 20 см требуемая ширина сечения составит не менее:

b = 6W/h 2 = 6·651.77/20 2 = 9.77 см (671.3.3)

По сортаменту таким требованиям удовлетворяет балка с сечением 20х10 см.

Если поперечное сечение деревянной балки имеет форму, отличную от прямоугольной или квадратной, то для определения момента сопротивления можно воспользоваться одной из следующих формул, а при особо сложной форме сечения сначала определить момент инерции, а потом уже момент сопротивления.

3.2 Для стальной балки с расчетным сопротивлением R = 245 Мпа (245000) кПа) требуемый момент сопротивления составляет:

Wтр = M/R = 8.464/245000 = 3.45·10 -5 м 3 (34.5 см 3 ) (658.3.7)

Далее требуемое сечение подбирается по одному из сортаментов.

Ну а подбор сечения ж/б балки — это отдельная большая тема.

1.4. Проверка по касательным напряжениям (для деревянной балки):

Расчетное сопротивление скалыванию вдоль волокон (для древесины второго сорта) Rск = 1.6 МПа.

Для прямоугольного сечения максимальные касательные напряжения определяются по следующей формуле:

т = 1.5″Q»/bh = 1.5·7.36/(0.1·0.2) = 552 кПа (0.552 МПа) 1.5. Определение прогиба:

Для деревянной балки сечением 20х10 см момент инерции составит:

I = Wh/2 = 666.66·20/2 = 6666.6 см 4 (0.00006666 м 4 ) (671.5.1)

Модуль упругости древесины составляет Е = 1·10 4 МПа (10 7 кПа)

f = 5Ql 4 /(384EI) = 0.02798 м (2.798 см) (671.5.2)

В данном случае прогиб составляет 1/164 от длины пролета балки.

Вот собственно и весь упрощенный расчет.

2. Классический расчет

Ну а теперь перейдем к классическому расчету. Но сразу скажу, от упрощенного он отличается только первыми двумя пунктами — определением опорных реакций и максимальных напряжений, принципы подбора сечения такие же, как и изложенные выше. Ну и добавится определение начального и конечного углов поворота, эпюры поперечных сил, изгибающих моментов, углов поворота и прогиба, куда ж без этого в классическом-то расчете.

2.1. Определение опорных реакций

Для определения опорной реакции А воспользуемся третьим уравнением статического равновесия системы (уравнением моментов относительно точки В):

ΣМВ = Al — ql 2 /2 = 0 (671.6.1)

Аl = ql 2 /2; (671.6.2)

A = ql 2 /2l = 4.6·3.2/2 = 7.36 кН (671.1)

Для определения опорной реакции В также воспользуемся третьим уравнением статического равновесия системы (уравнением моментов относительно точки А):

ΣМА = Вl — ql 2 /2 = 0 (671.6.3)

Вl = ql 2 /2; (671.6.4)

В = ql 2 /2= 4.6·3.2/2 = 7.36 кН (671.1.2)

Для проверки воспользуемся вторым уравнением статического равновесия системы:

у = ql — А — В = 0 (671.6.5)

4.6·3.2 — 7.36 — 7.36 = 0 (671.6.6)

В точке А поперечные силы условно равны нулю.

Уравнение поперечных сил будет иметь следующий вид:

«Q» = А — qx (671.6.7)

где х — расстояние от начала координат (точки А) до рассматриваемого сечения балки.

Соответственно на расстоянии 0 м от точки А поперечные силы будут равны:

«Q»А = 7.36 — 3.2·0 = 7.36 кН (671.6.8)

«Q» = А — ql + В = 7.36 — 3.2·4.6 + 7.36 = 0 (671.6.9)

Этих данных достаточно для построения эпюр поперечных сил.

2.2. Определение изгибающих моментов:

Для определения изгибающих моментов, действующих в поперечных сечениях балки, используется метод сечений, согласно которому уравнение моментов будет иметь следующий вид:

М = Ах — qx 2 /2 (671.7.1)

МА = А·0 — q0 2 /2 = 0 (671.7.2)

в середине пролета:

М = Аl/2 -q(l/2) 2 /2 = 8.464 кНм (671.2.1)

в точке В (в конце балки):

М = Al — ql 2 /2 = ql·l/2 — ql 2 /2 = 0 (671.7.3)

Примечание: эпюра изгибающих моментов — квадратная парабола. Если есть необходимость определить значение изгибающего момента для любого другого поперечного сечения, то для этого нужно воспользоваться формулой (671.7.1). Но как правило в таких простых случаях загружения в этом нет необходимости. Опять же варианты использования балок переменного сечения, когда требуется знать различные значения моментов, здесь не рассматриваются.

2.3 Определение углов поворота и прогибов поперечного сечения.

Уравнение углов поворота — результат интегрирования уравнения моментов. А как известно, при интегрировании появляется постоянная интегрирования, в данном случае начальный угол поворота ΘА, который в данном случае не равен нулю. Кроме того на значение углов поворота и прогибов влияет жесткость рассматриваемой балки, выражаемая через ЕI, т.е. чем больше жесткость балки (модуль упругости и момент инерции) тем меньше в итоге углы поворота и прогибы.

Уравнение углов поворота для нашей балки будет выглядеть так:

θx = ∫Mdx/EI = — ΘА + Ax 2 /2EI — qx 3 /6EI (671.8.1)

Уравнение прогибов — это в свою очередь результат интегрирования уравнения углов поворота на рассматриваемом участке:

fх = ∫ΘАdx = — θAx + Ax 3 /6EI- qx 4 /24EI (671.8.2)

Как видим, в данном случае постоянная интегрирования — начальный прогиб — равна нулю и это логично — на опорах прогиба быть не может (во всяком случае в теории). Это позволяет составить дополнительное уравнение прогиба для одной из опор, например для точки В уравнение прогиба будет иметь вид:

fВ = — θAl + Al 3 /6EI — ql 4 /24EI = 0 (671.8.3)

θAl = Al 3 /6EI — ql 4 /24EI (671.8.4)

θA = ql 3 /(2·6EI) — ql 4 /(l·24EI) (671.8.5)

θA = ql 3 /24EI = 12.978/EI (671.8.6)

Так как у нас симметричны и балка и нагрузка, что мы уже заметили раньше, то конечный угол поворота поперечного сечения (на опоре В) будет равен начальному углу поворота.

Проверяем правильность вычислений:

θB = — ΘА + Al 2 /2EI — ql 3 /6EI = (-12.978 + 77.8688 — 51.9125)/EI = 12.977/EI (671.8.7)

Надеюсь разница в третьем знаке после запятой в значениях начального и конечного угла поворота не будет вас сильно пугать, хотя подобные вопросы иногда возникают. Сразу скажу, тут дело только в калькуляторе — чем более точный результат вы хотите получить, тем больше знаков после запятой следует него забивать.

Так как у нас симметричные и балка и нагрузка, то нет необходимости определять точку, где прогиб максимальный. Это сечение будет посредине балки. Впрочем есть формула (671.8.3) и с помощью ее можно определить прогиб в любом рассматриваемом сечении, но нас в данном случае интересует только максимальный прогиб:

fmax = — θВ2.3 + В·2.3 3 /6EI — q2.3 4 /24EI = — 18.6561/ЕI (671.8.8)

fmax = — θА2.3 + А·2.3 3 /6EI — q2.3 4 /24EI = — 18.6561/ЕI (671.8.9)

Чтобы эпюры углов поворота и прогибов были универсальными и подходили и для деревянных и для стальных и для железобетонных и для каких угодно других балок, на эпюрах показываются не абсолютные значения, а относительные. Т.е. обе части уравнения умножаются на ЕI.

2.4. Построение эпюр поперечных сил и изгибающих моментов:

На основании полученных ранее данных строим эпюры:

Рисунок 671.1. Расчетная схема (а), замена опор на реактивные силы (б), эпюра поперечных сил (в), эпюра изгибающих моментов (г), эпюра углов поворота (д), эпюра прогибов (е).

На эпюре поперечных сил в начале координат (в точке А) откладываем вверх значение опорной реакции А, согласно направлению действия реактивной силы (опорной реакции. В точке В откладываем значение опорной реакции вниз. Соединяем полученные точки прямой.

Тут может возникнуть вопрос: а почему на опоре В мы откладываем значение вниз, когда значение опорной реакции у нас положительное? Отвечаю: дело в том, что мы не просто рисуем картинку, а вообще то строим график функции, описываемой уравнением (671.6.7) и согласно этому уравнению в сечении максимально близком к опоре В (х→l) значение этого уравнения будет:

«Q»х→l = Аl — ql = — 7.36 кН (671.9)

А в точке В, где приложена реактивная сила (опорная реакция В) на эпюре происходит скачок (как впрочем и в точке А) т.е. формально мы все-таки откладываем опорную реакцию вверх и таким образом все, как положено.

Так как у нас балка на шарнирных опорах, на которую действует только равномерно распределенная нагрузка, то значения моментов на опорах равны нулю, что мы и определили ранее. На эпюре моментов посредине пролета (на расстоянии 2.3 м от начала координат) откладываем вниз значение максимального момента. Соединяем эти точки кривой линией, как показано на рисунке. В общем-то как уже говорилось, эта кривая линия — квадратичная парабола и формально для ее построения можно определить сколь угодно много значений моментов для различных сечений. Но как правило необходимости в этом нет: никакой, даже очень придирчивый преподаватель не сможет отличить квадратичную параболу от кубической, особенно если вы большими способностями в рисовании не отличаетесь.

Примечание: откладывать значение момента можно и вверх, как это принято у конструкторов машин и механизмов, принципиального значения это не имеет. Просто у строителей принято строить эпюры моментов на растянутой стороне сечения.

На эпюре углов поворота в точке А откладываем значение начального угла поворота, в точке В — значение конечного угла поворота. Соединяем эти точки кубической параболой так, чтобы она проходила через середину пролета.

На эпюре углов поворота откладываем значение максимального прогиба на расстоянии 2.3 м от начала координат (середина пролета). Проводим параболу четвертой степени через точку А, точку максимального прогиба и точку В. Если с этим возникают проблемы, то можно вычислить значения и прогибов и углов поворота для любых других поперечных сечений балки.

Вот собственно и весь расчет.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:
  • Расчет конструкций . Примеры расчетов
Оценка пользователей:НетПереходов на сайт:2808Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Распределенная нагрузка на балку — формулы, условия и примеры расчета

Равномерно и неравномерно распределенная нагрузка на балку

Распределение сил, которые лежат в одной плоскости, задается равномерно распределенной тяжестью. Основным обозначением является интенсивность q — предельная тяга, несущая равнодействующую на единицу длины нагруженного участка АВ длиной а.

Единицы измерения распределённой нагрузки [Н/м].

Её также можно заменить на величину Q, которая приложена в середину AB.

Составим формулу: Q = q∗a

Неравномерно распределённую нагрузку чаще всего упрощают, приводя её к эквивалентной равномерно распределенной, чтобы упростить расчеты.

При построении также следует учитывать максимальный прогиб балки, её прочность, расчетную опорную реакцию и моментальную опору.

Методика выполнения расчета на прогиб

Прежде чем приступать к расчету, нужно будет вспомнить некоторые зависимости из теории сопротивления материалов и составить расчетную схему. В зависимости от того, насколько правильно выполнена схема и учтены условия нагружения, будет зависеть точность и правильность расчета.

Используем простейшую модель нагруженной балки, изображенной на схеме. Простейшей аналогией балки может быть деревянная линейка, фото.

В нашем случае балка:

  1. Имеет прямоугольное сечение S=b*h, длина опирающейся части составляет L;
  2. Линейка нагружена силой Q, проходящей через центр тяжести изгибаемой плоскости, в результате чего концы поворачиваются на небольшой угол θ, с прогибом относительно начального горизонтального положения, равным f;
  3. Концы балки опираются шарнирно и свободно на неподвижных опорах, соответственно, не возникает горизонтальной составляющей реакции, и концы линейки могут перемещаться в произвольном направлении.

Для определения деформации тела под нагрузкой используют формулу модуля упругости, который определяется по соотношению Е=R/Δ, где Е – справочная величина, R— усилие, Δ— величина деформации тела.

Вычисляем моменты инерции и сил

Для нашего случая зависимость будет выглядеть так: Δ = Q/(S·Е). Для распределенной вдоль балки нагрузки q формула будет выглядеть так: Δ = q·h/(S·Е).

Далее следует наиболее принципиальный момент. Приведенная схема Юнга показывает прогиб балки или деформацию линейки так, если бы ее раздавливали под мощным прессом. В нашем случае балку изгибают, а значит, на концах линейки, относительно центра тяжести, приложены два изгибающих момента с разным знаком. Эпюра нагружения такой балки приведена ниже.

Чтобы преобразовать зависимость Юнга для изгибающего момента, необходимо обе части равенства умножить на плечо L. Получаем Δ*L = Q·L/(b·h·Е).

Если представить, что одна из опор жестко закреплена, а на второй будет приложен эквивалентный уравновешивающий момент сил Mmax = q*L*2/8, соответственно, величина деформации балки будет выражаться зависимостью Δх = M·х/((h/3)·b·(h/2)·Е). Величину b·h2/6 называют моментом инерции и обозначают W. В итоге получается Δх = M·х/(W·Е) основополагающая формула расчета балки на изгиб W=M/E через момент инерции и изгибающий момент.

Чтобы точно выполнить расчет прогиба, потребуется знать изгибающий момент и момент инерции. Величину первого можно посчитать, но конкретная формула для расчета балки на прогиб будет зависеть от условий контакта с опорами, на которых находится балка, и способа нагружения, соответственно для распределенной или концентрированной нагрузки. Изгибающий момент от распределенной нагрузки считается по формуле Mmax = q*L2/8. Приведенные формулы справедливы только для распределенной нагрузки. Для случая, когда давление на балку сконцентрировано в определенной точке и зачастую не совпадает с осью симметрии, формулу для расчета прогиба приходится выводить с помощью интегрального исчисления.

Момент инерции можно представить, как эквивалент сопротивления балки изгибающей нагрузке. Величину момента инерции для простой прямоугольной балки можно посчитать по несложной формуле W=b*h3/12, где b и h – размеры сечения балки.

Из формулы видно, что одна и та же линейка или доска прямоугольного сечения может иметь совершенно разный момент инерции и величину прогиба, если положить ее на опоры традиционным способом или поставить на ребро. Недаром практически все элементы стропильной системы крыши изготавливаются не из бруса 100х150, а из доски 50х150.

Реальные сечения строительных конструкций могут иметь самые разные профили, от квадрата, круга до сложных двутавровых или швеллерных форм. При этом определение момента инерции и величины прогиба вручную, «на бумажке», для таких случаев становится нетривиальной задачей для непрофессионального строителя.

Формулы для практического использования

На практике чаще всего стоит обратная задача – определить запас прочности перекрытий или стен для конкретного случая по известной величине прогиба. В строительном деле очень сложно дать оценку запасу прочности иными, неразрушающими методами. Нередко по величине прогиба требуется выполнить расчет, оценить запас прочности здания и общее состояние несущих конструкций. Мало того, по выполненным измерениям определяют, является деформация допустимой, согласно расчету, или здание находится в аварийном состоянии.

Совет! В вопросе расчета предельного состояния балки по величине прогиба неоценимую услугу оказывают требования СНиПа. Устанавливая предел прогиба в относительной величине, например, 1/250, строительные нормы существенно облегчают определение аварийного состояния балки или плиты.

Например, если вы намерены покупать готовое здание, простоявшее достаточно долго на проблемном грунте, нелишним будет проверить состояние перекрытия по имеющемуся прогибу. Зная предельно допустимую норму прогиба и длину балки, можно безо всякого расчета оценить, насколько критическим является состояние строения.

Строительная инспекция при оценке прогиба и оценке несущей способности перекрытия идет более сложным путем:

  • Первоначально измеряется геометрия плиты или балки, фиксируется величина прогиба;
  • По измеренным параметрам определяется сортамент балки, далее по справочнику выбирается формула момента инерции;
  • По прогибу и моменту инерции определяют момент силы, после чего, зная материал, можно выполнить расчет реальных напряжений в металлической, бетонной или деревянной балке.

Вопрос – почему так сложно, если прогиб можно получить, используя для расчета формулу для простой балки на шарнирных опорах f=5/24*R*L2/(E*h) под распределенным усилием. Достаточно знать длину пролета L, высоту профиля, расчетное сопротивление R и модуль упругости Е для конкретного материала перекрытия.

Ответ прост — необходимо непросто рассчитать, но и сохранить на бумаге ход выполнения проверочного расчета, чтобы сделанные выводы о состоянии перекрытия можно было проверить и перепроверить по всем этапам проверки.

Совет! Используйте в своих расчетах существующие ведомственные сборники различных проектных организаций, в которых в сжатом виде сведены все необходимые формулы для определения и расчета предельного нагруженного состояния.

Проверка сечения балки по касательным напряжениям

Так как Qmax = 68 кН, то

Построение эпюр нормальных σ и касательных τ напряжений в неблагоприятном сечении балки:

Построение эпюры нормальных напряжений

Построение эпюры касательных напряжений

В отношении главных напряжений неблагоприятным является сечение над левой опорой, в котором:

М = -32 кНм и Q = 68 кН.

Значение напряжений в различных точках по высоте двутавра сведены в таблицу 1

Результаты расчета в примере

Изобретение относится к области неразрушающего контроля и мониторинга прогиба балок. Объект изобретения предназначен для строительных конструкций, находящихся в стадии эксплуатации.

Причины возрастания прогиба балки

1) деградация материалов;

2) дефекты и образование неисправностей (трещины, коррозия, гниение в древесине и т.д.);

3) увеличение нагрузки.

Прогибы балок зданий и сооружений можно измерить различными способами.

Известен [1, с.52] способ измерения прогиба балок в различное время их эксплуатации, заключающийся в том, что с помощью двух планок с делениями, одна из которых закреплена неподвижно в бетонном или железобетонном основании, а другая планка закреплена на балке, и по их взаимному смещению судят о прогибе балки. Полный прогиб складывается из прогиба от собственного веса балки и существующей на ней нагрузки. Полный прогиб измеряют с помощью высокоточной рейки и нивелира.

Данный способ обладает рядом недостатков:

— малая точность измерений прогиба балки;

— необходимость устройства опорного железобетонного основания;

— заполняется пространство под балкой, что нарушает технологический процесс;

— нет дистанционного управления; затруднен мониторинг прогиба балки.

Известен [1, с.54] способ измерения прогибов балки прогибомерами систем Максимова и ЦНИИСК, заключающийся в том, что к испытываемой конструкции в месте, где требуется измерить прогиб, прикрепляют стальную проволоку диаметром 0,25 мм так, чтобы она дважды обматывала барабан прогибомера со шкалой, и к концу ее подвешивают груз весом 1,5 кг. При прогибе конструкции проволока вращает барабан, соединенный со стрелкой, которая движется по циферблату. На циферблате имеется также счетчик оборотов с ценой деления 0,1 см. Прибор крепится к неподвижному предмету специальной металлической струбциной.

Недостатками этого способа являются потребность неподвижной опоры (предмета) для крепления прибора, который вместе с проволокой закрывает пространство под балкой на время измерения прогиба балки; отсутствие дистанционного управления измерениями прогиба; требуется присутствие работника на этапе измерений; затруднен мониторинг прогиба; на результаты измерений оказывает влияние температура и другие природные явления (ветер, дождь, снег и т.д.); неточность измерений, вызванная изменением места наибольшего прогиба балки, вызванного изменением свойств материала балки с течением времени, положением нагрузки и т.д.

Наиболее близким к заявленному способу измерений прогибов балок и плит является известный [1, с.59] способ измерения прогибов (перемещений) электромеханическим прибором со штоком, упругим элементом и тензорезисторами, наклеенными на упругие элементы, заключающийся в том, что прибор устанавливают на неподвижную опору под балкой в месте наибольшего прогиба, шток упирают в балку непосредственно или через дополнительную связь, балка прогибается под нагрузкой в результате деградации материала и других причин в течение времени, прогибы регистрируют косвенно через электрические сопротивления тензорезисторов ΔR, по которым через переводной коэффициент определяется прогиб балки.

Недостатками этого способа является низкая точность измерения прогиба балки, вызванная тем, что измерение производится без учета возможного изменения места наибольшего прогиба по длине балки, которое вызвано различными непредвиденными причинами; необходимость опорного устройства для крепления прибора и связи с балкой прибора, что приводит к ограничению использования пространства под балкой или над балкой на время измерений; необходимость устройства защиты прибора от различных природных воздействий и его охраны, особенно в зимнее время при непрерывном измерении, что затрудняет мониторинг прогиба балки.

Целью предлагаемого способа определения прогиба балок является повышение точности измерений наибольших прогибов балок; проведение мониторинга прогиба балки; измерение прогибов с дистанционным управлением без нарушения технологических процессов над балкой и под балкой в период измерения прогибов в любых условиях окружающей среды.

Способ заключается в следующем.

Существующими средствами измерения, например, с помощью высокоточной геодезической рейки и нивелира, устанавливают значение наибольшего начального прогиба балки Δ0 в любой момент времени эксплуатации балки и тем самым устанавливают места наибольшего прогиба балки.

Определяют значение постоянного коэффициента r, значение которого определяют по формулам в зависимости от расчетной схемы балки методами строительной механики из [2], который входит в расчетную формулу прогиба балки.

На фиг.1 показана условная схема подключения тензорезисторов на балке, где 1 — провода, 2 — рабочие тензорезисторы, 3 — компенсационные тензорезисторы, 4 — балка, 5 — тензостанция. Проводами 1 соединятся рабочие 2 и компенсационные 3 тензорезисторы, размещенные на обоих поясах балки 4 на участке в месте наибольшего прогиба на подготовленную поверхность, при этом рабочие крепятся вдоль главных напряжений σ, а компенсационные — перпендикулярно им в промежутках между рабочими тензорезисторами. Все провода 1 соединены с измерительным прибором электрического (омического) сопротивления в виде многоканальной тензостанции 5.

Подготовка к работе включает в себя следующие действия. Изолируют тензорезисторы эпоксидной смолой, монтируют известные из работы [2] мостовые схемы для каждой пары рабочих 2 и компенсационных тензорезисторов 3 в одном сечении балки R1 и R2, подключают провода 1 с тензостанцией 5 и определяют R0 — начальное электрическое (омическое) сопротивление всех рабочих тензорезисторов. Тензорезисторы наклеивают на участках поясов балки длиной 15-20 см по одному тензорезистору на каждые 5 см длины пояса, как показано на фиг.1, при базе тензорезисторов 10-30 мм, так как на этой длине может попадать сечение балки с наибольшим прогибом. Число рабочих тензорезисторов принимают от 3 до 5 в том и другом поясе балки исходя из вероятности смещения наибольшего прогиба балки от тех или иных причин в процессе эксплуатации балки в пределах 15-20 см длины балки, так как на длине 15-20 см можно разместить от 3 до 5 рабочих и компенсационных тензорезисторов с базой (длиной) 10-30 мм и шириной (компенсационных) 10 мм.

Весь процесс измерения происходит следующим образом:

1) при увеличении прогиба изменяется омическое сопротивление тензорезисторов, и по соединительным проводам вся информация об этом поступает на тензостанцию;

2) полный прогиб определяют по формуле

где Δ0 — начальный прогиб в момент начала наблюдений при t=0, измеренный нивелиром и высокоточной геодезической рейкой;

r — постоянный коэффициент, зависящий от расчетной схемы балки.

Известно из [1], что и ,

где k — коэффициент тензочувствительности тензорезисторов, тогда имеем эпюру ΔR подобной эпюре ε, как показано на фиг.2 и фиг.3, на которых изображены однопролетные балки с сосредоточенной нагрузкой в середине и равномерно распределенной нагрузкой по всей длине пролета, где ε1 и ε2 — деформации, ΔR1 и ΔR2 — омические (электрические) сопротивления, Δ — наибольший прогиб, L — длина пролета, F — сосредоточенная сила, h — высота сечения, b — ширина сечения.

Из эпюры ΔR имеем при и ΔR2 по абсолютному значению. Отсюда , где ус — расстояние от нейтральной оси балки до верхнего или нижнего края балки с симметричным поперечным сечением балки, как показано на фиг.2 и фиг.3. Известно из работы [2], что для однопролетной балки с сосредоточенной нагрузкой в середине пролета наибольший прогиб . С учетом J=W·yc и значением yc имеем:

— для однопролетной балки с шарнирными опорами и сосредоточенной силой в середине пролета балки по фиг.2 имеем

где для балки любого симметричного поперечного сечения высотой h имеем , k — коэффициент тензочувствительности тензорезисторов, Е — модуль упругости материала;

— для однопролетной балки с шарнирными опорами и равномерно распределенной нагрузкой по всей длине пролета по фиг.3 и имеем

где , |ΔR1(t)| и |ΔR2(t) — приращение электрических (омических) сопротивлений тензорезисторов в момент времени t, взятых по абсолютной величине, в омах. Для других расчетных схем находят значение r методами строительной механики;

3) проводят предварительный контроль достоверной работы мостовой схемы из тензорезисторов путем сравнения средних значений измерений от контрольной нагрузки F0, полученных прямыми механическими измерениями прогиба Δ1=Δ(F0), например геодезической высокоточной рейкой и нивелиром и по результатам измерений омических сопротивлений (ΔR1 и ΔR2) по формуле

должно соблюдаться равенство Δ1=Δ2, с отличием не более 5%;

4) дальнейшие измерения прогиба балки в любой момент времени t осуществляют только по показаниям измерения сопротивления тензорезисторов по расчетной формуле

для значений r, зависящих от расчетных схем балок.

На основании результатов измерений f и Δ, приведенных в сводной таблице, построены графики зависимости прогибов f и Δ от нагрузки, представленные на фиг.4, где показаны результаты лабораторных испытаний балки с измерением прогибов индикатором часового типа и измерением сопротивлений ΔR1 и ΔR2.

Список использованной литературы

1. Землянский А.А. Обследование и испытание зданий и сооружений: учебное пособие. — М: Изд-во АСВ, 2001. — 240 с., с ил.

2. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. Изд-во «Наукова Думка», Киев, 1975. — 703 с.
Способ неразрушающего измерения прогиба балок в строительных конструкциях на стадии эксплуатации, заключающийся в том, что на поверхностях верхнего и нижнего поясов балки в месте наибольшего прогиба Δ, устанавливаемого с помощью высокоточной геодезической рейки и нивелира, наклеивают тензорезисторы с одинаковыми характеристиками непосредственно на подготовленную поверхность верхнего и нижнего поясов балки, отличающийся тем, что рабочие и компенсационные тензорезисторы наклеивают в количестве от 3 до 5 штук в каждом поясе на участке длиной от 15 до 25 см с наибольшим прогибом Δ, при этом рабочие тензорезисторы крепят вдоль главных напряжений σ вдоль балки, а компенсационные — между рабочими тензорезисторами поперек балки; защищают их от различных воздействий эпоксидной смолой, монтируют мостовые схемы для каждой пары тензорезисторов (рабочих и компенсационных) и соединяют провода от них с тензостанцией; измеряют начальное сопротивление R рабочих тензорезисторов, при этом прогиб балки Δ(t) в любой момент времени t определяют по формуле:Δ(t)=Δ+r·(|ΔR(t)|+|ΔR(t)|),где Δ — начальный наибольший прогиб балки в момент времени t=0, измеренный с помощью высокоточной геодезической рейки и нивелира до наклейки тензорезисторов; r — постоянный коэффициент, зависящий от расчетных схем и размеров балки, определяемый методами строительной механики:для балки с равномерно распределенной нагрузкой: ;для балки с сосредоточенной нагрузкой в середине пролета: ,где k — коэффициент тензочувствительности, l — длина пролета балки, h — высота балки;|ΔR(t)| и |ΔR(t)| — наибольшие приращения электрических (омических) сопротивлений из всех рабочих тензорезисторов, измеренных с помощью многоканальной тензостанции, вызванных изменением прогиба балки, различными причинами, измеряемые постоянно или периодически в отдельные моменты времени или в процессе эксплуатации балки при мониторинге прогиба балки.

Пример расчета прогиба балки

Для закрепления пройденного материала, предлагаю рассмотреть пример с заданными численными значениями всех параметров балки и нагрузок. Возьмем также консольную балку, которая жестко закреплена с правого торца. Будем считать, что балка изготовлена из стали (модуль упругости E = 2·105 МПа), в сечении у нее двутавр №16 (момент инерции по сортаменту I = 873 см4). Рассчитывать будем прогиб свободного торца, находящегося слева.

Подготовительный этап

Проводим подготовительные действия, перед расчетом прогиба: помечаем базу O, с левого торца балки, проводим координатные оси и показываем реакции, возникающие в заделке, под действием заданной нагрузки:

В методе начальных параметров, есть еще одна особенность, которая касается распределенной нагрузки. Если на балку действует распределенная нагрузка, то ее конец, обязательно должен находиться на краю балки (в точке наиболее удаленной от заданной базы). Только в таком случае, рассматриваемый метод будет работать. В нашем примере, нагрузка, как видно, начинается на расстоянии 2 м. от базы и заканчивается на 4 м. В таком случае, нагрузка продлевается до конца балки, а искусственное продление компенсируется дополнительной, противоположно-направленной нагрузкой. Тем самым, в расчете прогибов будет уже учитываться 2 распределенные нагрузки:

iSopromat.ru

Метод начальных параметров (сокр. — МНП) позволяет определять прогибы и углы наклона сечений в прямых балках с постоянной жесткостью поперечного сечения EIx.

МНП является одним из относительно простых способов расчета угловых и линейных перемещений при изгибе в балках с любым количеством силовых участков.

Пример расчета перемещений сечений балки смотрите в нашем видеоуроке:

Для применения метода начальных параметров есть ограничения: рассчитываемая балка должна быть выполнена из однородного материала, иметь прямую ось и постоянные форму и размеры поперечного сечения.

Универсальные уравнения МНП

Для балок с типичным набором нагрузок универсальные уравнения метода начальных параметров имеют вид:

где
θz, yz – соответственно угловое и линейное перемещения рассматриваемого сечения балки;
θ0, y0 – угол наклона и прогиб сечения балки в выбранном начале координат (НК). Это и есть начальные параметры (являются постоянными интегрирования) по которым назван сам метод. Определяются из соответствующих опорных условий;
m, F и q – все сосредоточенные моменты (пары сил), силы (включая опорные реакции) и распределенные нагрузки (в т.ч. компенсирующие) приложенные к рассматриваемой балке;
z – расстояние от выбранного начала координат до рассматриваемого сечения балки (положение сечения);
a и b – расстояния от начала координат до соответствующих моментов и сосредоточенных сил;
c – расстояние от НК до начала действия распределенной нагрузки;
E – модуль продольной упругости материала балки;
Ix — момент инерции сечения относительно оси x.

Данные уравнения МНП являются лишь шаблонами, по которым записываются уравнения для конкретных расчетных схем (пример рассмотрен ниже).

Примечания к методу

Перед записью уравнений метода начальных параметров выбирается начало координат балки.

Начало координат выбирается в крайнем левом или правом конце балки (лучше в том, который расположен на опоре).

Слагаемые в уравнениях записываются последовательно по силовым участкам от начала координат.

Знаки отдельных слагаемых в универсальных уравнениях МНП принимаются по правилу знаков для изгибающего момента, т.е. слагаемые с нагрузками, которые на рассматриваемом участке стремятся сжать верхние слои балки, записываются положительными.

Если распределенная нагрузка q действует в пределах части длины балки (обрывается, не доходя до конца), то ее действие продлевается в сторону, противоположную от начала координат, до конца балки и добавляется компенсирующая нагрузка той же интенсивности но обратного направления.

Начальные параметры универсальных уравнений МНП определяются из условий закрепления балки в опорах.
На шарнирных опорах вертикальные линейные перемещения (прогибы) равны нулю, т.е. yA=0 и yB=0.

В жесткой заделке отсутствуют (равны нулю) и угловые и линейные перемещения (θA=0, yA=0).

Положительное значение рассчитанного прогиба yz соответствует перемещениям сечения вверх по отношению к продольной оси балки.

Знак угла поворота θz зависит от выбора начала координат: при выборе НК в крайнем левом сечении балки угол θz будет считаться положительным при повороте сечения против хода часовой стрелки

Соответственно, если начало координат выбрано справа – положительным считается угол при повороте по часовой стрелке.

Пример составления уравнений МНП

Порядок составления уравнений МНП и расчета перемещений рассмотрим на примере двухопорной балки

Выбор начала координат

Начало координат в данной расчетной схеме выбираем в самой правой точке D балки, так как она расположена на опоре, и, следовательно, прогиб в этой точке будет отсутствовать.
Ось z направляем соответственно влево.

Теперь для данной балки правый торец будем считать ее началом, левый – соответственно концом.

Действия с распределенной нагрузкой

Как видно по схеме, действие распределенной нагрузки обрывается в точке B, не доходя до конца балки.

Поэтому ее действие необходимо продлить

при этом схема нагружения балки изменилась. Теперь, чтобы вернуться к начальной системе нагрузок, добавляем компенсирующую распределенную нагрузку обратного направления.

Это действие выполняется, потому что в уравнениях МНП параметр «c» учитывает только начало действия нагрузки.

Составление уравнений МНП

Универсальные уравнения МНП для заданной балки записываются последовательно по участкам со стороны начала координат.

При этом желательно отделять части уравнения для каждого из участков.

Запишем уравнение угловых перемещений θz метода начальных параметров.
Участок CD
Мысленно закрепив балку между сечениями C и D,

в стороне начала балки видим только опорную реакцию RD которая по правилу знаков записывается положительной, так как сжимает верхние слои балки.

Участок BC
На этом участке, как и на всех остальных, закрепив балку в произвольном месте, смотрим в сторону НК.

Видим момент m и распределенную нагрузку q.

Момент положителен т.к. сжимает верхние слои балки, нагрузка q отрицательна т.к. сжимает ее нижние слои.

Заметим, что здесь мы записали сразу всю «верхнюю» распределенную нагрузку q. В данном уравнении для других участков ее записывать больше не надо.
Участок AB
При рассмотрении данного участка к уравнению добавляются реакция в опоре B и «нижняя» компенсирующая нагрузка q.

Записываем их положительными, т.к. они стремятся сжать верхние слои балки.

Силы и моменты, приложенные в самом конце балки, в уравнения не входят.
На вопрос «Разве сила F не влияет на перемещение сечений?» ответ следующий: В уравнениях метода начальных параметров поперечная сила и момент, приложенные к концу балки оказывают влияние на перемещения опосредованно, через опорные реакции R.

Уравнение метода начальных параметров для прогибов составляется аналогично.

Определение начальных параметров

В правой части полученных уравнений известны все параметры кроме начальных θ0 и y0 (переменная z задается при решении).

Прогиб и угол наклона сечения в начале координат определим из опорных условий.

Балка закреплена на двух шарнирных опорах (точки B и D), в которых прогибы всегда равны нулю.

Граничные условия метода начальных параметров:

Так как точка D была принята за начало координат, то прогиб в этой точке и есть y0, т.е. правильно выбрав НК, мы сразу определили один из двух начальных параметров.

Угловое перемещение в начале координат θ0 рассчитаем из оставшегося (первого) опорного условия.

Для этого запишем уравнение прогибов для точки B, которое равно нулю

От НК до сечения B два участка, поэтому берется не все уравнение, а только его части, включающие нагрузки на соответствующих участках (CD и BC).
Из него выражаем и находим значение θ0.

Теперь можно рассчитывать перемещения любого сечения балки.

Расчет перемещений

Для определения перемещений сечения расположенного на i-м участке от начала координат в расчете участвуют только части уравнений от НК до i-го участка включительно.

Выбирая нужное уравнение и задавая положение z сечений от начала координат определяются их угловые и линейные перемещения.

Например, для расчета угла наклона и прогиба сечения K расположенного на расстоянии zK от НК

уравнения метода начальных параметров будут иметь вид:

Остается только подставить значения и провести расчеты.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах


источники:

http://pressadv.ru/metally/progib-balki.html

http://isopromat.ru/sopromat/teoria/metod-nachalnyh-parametrov