Уравнение профиля канала что это

Лекция 5, 6. Биофизика транспортных процессов

Лекция 5, 6. Биофизика транспортных процессов

Перейдем теперь к рассмотрению некоторых направлений клеточной биофизики и начнем с биофизики транспортных процессов.

Прежде всего, определим некоторые понятия – под транспортом на клеточном ровне понимаются прежде процессы переноса нейтральных веществ и ионов через биологические мембраны, и именно эти процессы изучаются в первую очередь в биофизике транспортных процессов. Надо отметить, что транспорт на клеточном уровне этими процессами не исчерпывается. Так существует латеральный транспорт – т. е. транспорт веществ ВДОЛЬ мембраны. Можно говорить также о транспорте веществ внутри клетки, который не связан с мембранными структурами, а осуществляется, например, за счет взаимодействия транспортируемых молекул с белками цитоскелета или водных потоков внутри клетки.

Однако именно трансмембранный транспорт, т. е. транспорт ЧЕРЕЗ биологические мембраны играет одну из ключевых ролей. Поему так? Чтобы понять это, необходимо вспомнить роль биологических мембран в существовании живых систем.

Как вы, наверно, знаете мембраны представляют собой клеточные структуры состоящие из бислоя (если нужно – напомнить структуру бислоя, РИС) и взаимодействующих с ним белков. У прокариот основной мембранной структурой является клеточная мембрана, выполняющая широкий спектр функций. У эукариот имеется широкий спектр мембранных структур – плазматическая мембрана, ядерная мембрана, сопрягающие мембраны – у митохондриальная и тилакоидная, и другие. Наиболее общей функцией биомембран является барьерная – т. к. за счет центрального гидрофобного участка в бислое, они обладают очень низкой проницаемостью для полярных, водорастворимых соединений. Именно благодаря этой функции мембраны и стали играть столь значительную роль в функционировании живых систем – без них само существование живых систем как отдельных объектов стало бы невозможным.

Однако, как мы уже говорили, живые системы – это открытые системы, т. е. системы, которые не могут существовать без обмена с внешней средой веществом и энергией. Отсюда существование биомембран, являющееся само по себе необходимым условиям для существования живых организмов в том виде в каком они есть, с необходимостью требует существования транспортных процессов через эти мембраны и обуславливает большую биологическую значимость этих процессов.

Рассмотрим процессы транспорта через биомембраны подробнее.

Простая диффузия представляет собой движение молекул незаряженного вещества по градиенту концентрации, т. е. от участков с более высоким содержанием данного вещества к участкам с более низким содержанием его. Такой процесс является пассивным, т. е. его непосредственное протекание не требует затрат энергии. Его существование было изначально показано эмпирически, однако этот закон может быть выведен, например, из более общего второго принципа термодинамики (равновесие – как отсутствие градиентов, если нужно объяснить). Впрочем, к явлению диффузии легко прийти и на основе молекулярной картины строения вещества и броуновского движения, которое, в общем-то, тоже вытекает из этой картины. Так, если у нас имеется два отсека, заполненных, например, разной концентрацией газа, то если мы откроем перегородку между этими отсеками, то получим, что количество молекул, движущихся из 1 в 2, будет пропорционально концентрации газа в 1, а из 2 в 1 – концентрации газа в 2 (РИС). Т. е. можно записать, что , а , следовательно – общая скорость транспорта молекул будет: . Учтем, что k зависит от расстояния между участками 1 и 2 и запишем, что k = k0*1/∆x, где ∆x – расстояние между участками С1 и С2. Учтем также, что, чтобы перейти к потоку мы должны домножить выражение на V/S, т. е. перейти к другой размерности (если нужно – пояснить). Отсюда получим:

или — уравнение Фика.

Отметим, что D – коэффициент диффузии, размерность которого обычно см2*с-1, j – поток вещества, с размерностью М*см-2*с-1. D – можно найти, учитывая, что , где R и T – универсальная газовая постоянная и абсолютная температура, а u — подвижность вещества в рассматриваемой среде.

В том случае, когда речь идет о перемещении вещества через тонкий барьер, например, через биомембрану, толщиной h, можно принять внутри этого барьера связь между С и х имеет линейный характер, т. е. dC/dx = const. Справедливость этого легко доказать, проанализировав зависимость ΔС от x, на участке от 0 до h:

, если х – мало (или если x

Дорожное хозяйство России
строительство и содержание дорог — это очень важно
  • Дорожное хозяйство России — что входит в понятие «дорожное хозяйство»
  • Дорожное хозяйство — сколько это стоит
  • Генеральная цель – удвоение пропускной способности и протяженности автодорог — основные цели по развитию автомобильных дорог России
  • Дорожные машины — средства механизации, применяемые при строительстве, содержании и ремонте дорог
  • Проблема обеспечения безопасности дорожного движения — и водитель, и пешеход, и даже инспектор — все они участники дорожного движения

Транспорт

Адиабатный процесс истечения газа.

Скорость истечения газа при адиабатном процессе определяется:

22 билет! Взаимосвязь термодинамических и геометрических параметров в потоке газа. Уравнение профиля канала.

Термодинамические параметры-это ряд велечин характеризующих, свойства каждой системы.

(Давление, температура, удельный объем, плотность и т.д.)

Геометрические параметры – числовые величины, определяющие размеры, форму, расположение поперечного сечения.

Взаимосвязь термодинамических и геометрических параметров заключается в том, что давление обусловлено взаимодействием молекул рабочего тела с поверхностью и численно равно силе, действующей на единицу площади поверхности тела по нормали к последней.

Термодинамические параметры зависят от геометрических параметров, в частности от площади.

Также эта зависимость наблюдается в уравнение профиля канала.

dS-изменение площади S-площадь M-число маха (M=w/wзв) p-давление dp-изменение давления

Билет№23

Сопла — специально спроектированные каналы для разгона рабочей среды и придания потоку определенного направления.

Назначение сопла — преобразование потенциальной энергии тела в кинетическую, поэтому для анализа происходящего в нем процесса начальная скорость потока несущественна и можно принять DI=0 , тогда уравнение I з. термодинамики при адиабатном истечении рабочего тела через сопло dp=h1-h2.

Билет№24

Диффузор — участок трубопровода, в котором происходит торможение потока жидкости или газа и повышение давления. «Это устройство обратное соплу».

При падении Vср(скорости) давление в направлении течения растет и кинетическая энергия потока частично преобразуется в потенциальную.

Преобразование энергии в диффузоре сопровождается возрастанием энтропии и уменьшением полного P.

Потери — разность на выходе и входе. Потерянная часть кинетической энергии затрачивается на L против сил трения и необратимо переходит теплоту.

Билет №25. Исследование процесса дросселирования. Эффект Джоуля-Томсона.

Отношение изменения температур реального газа при дросселировании без подвода и отвода теплоты и без совершения в нём работы к изменению давления в этом процессе называют эффектом Джоуля-Томсона.

Для идеального газа эффект Джоуля-Томсона равен нулю, т.к. температура газа в результате процесса дросселирования не изменяется.

Дросселирование (мятие) – необратимый процесс, в котором давление при прохождении газа через суживающееся отверствие уменьшается без совершения внешней работы.

Уравнение процесса дросселирования: при начальной и конечной скорости газа 1 и 2 и внутренней энергией (кин.) U1 и U2:

1 и 2 мало чем отличаются друг от друга, то изменением внешней кинетической энергии можно пренебречь и считать:

Энтальпия в результате дросселирования не измениться.

Билет №26. Прямые и обратные циклы, их назначение.

Циклом называется ряд последовательных процессов, в результате которых вещество возвращается в исходное состояние.

Процесс называют обратимым, если его можно провести в обратном направлении так, что и вещество, и окружающая среда пройдут те же промежуточные состояния.

Обратимый процесс возможен, если выполняются 2 условия:

1.Процесс должен быть равновесным, т.е. при его протекании все параметры скорость, давление и температура в каждой точке вещества одинаковы.

2.Температура источника тепла должна быть близкой к температуре вещества, т.е. температура вещества в процессе изменяется, то требуется бесконечно большое количество источников тепла с близкой температурой.

Т.е. оба условия не выполнимы, обратимый процесс — это научная абстракция, все реальные процессы не обратимы.

Прямой цикл Карно.

V

1-2 изотермическое расширение газа при подключении к горячему источнику с Т1=Т2 g1= RT1lnV2/V1

2-3 адиабатическое расширение при отключение о горячего источника с изменением температуры Т3/Т2=(V2/V3) k -1

3-4 изотермическое сжатие при подключении к холодному источнику Т3=Т4, g2= — RT3lnV4/V3=RT3lnV3/V4

4-1 адиабатическое сжатие при отключении от холодного источника с изменением температуры T1/T4=(V4/V1) k -1

nt=1 – (RT3 lnV3/V4)/(RT1lnV2/V1)=1 — T3/T1

т.к. Т1=Т2, а Т3=Т4, то Т4/Т1=Т3/Т2 (V4/V1) k -1 =(V1/V4) k -1

V2/V3=V1/V4 V2V4=V1V3 V2/V1= V3/V4

Ln(V2/V1) k-1 =ln(V3/V4) k-1

Цикл Карно идеальный самый высокий термический КПД, на практике не применяется из-за высоких температур и давления, которые развиваются в цикле, что делает двигатель очень громоздким.

Обраный цикл Карно. То же самое только в другую сторону. Идеальный цикл холодильной машины.

28 Циклы паротурбинных установок (ПТУ)

Паротурбинная установка является основой современных тепловых и атомных электростанций. Рабочим телом в таких установках является пар какой-либо жидкости (водяной пар). Основным циклом в паротурбинной установке является цикл Ренкина.

Принципиальная схема ПТУ показана на рис.7.1 и процесс получения работы происходит в следующим образом. В паровом котле (1) и в перегревателе (2) теплота горения топлива передается воде. Полученный пар поступает в турбину (3), где происходит преобразование теплоты в механическую работу, а затем в электрическую энергию в электрогенераторе (4). Отработанный пар поступает в конденсатор (5), где отдает теплоту охлаждающей воде. Полученный конденсат насосом (6) отправляется в питательный бак (7), откуда питательным насосом (8) сжимается до давления, равного в котле, и подается через подогреватель (10) в паровой котел (1).

Рассмотрим цикл Ренкина на насыщенном паре. Схема установки отличается от предыдущей схемы тем, что в данном случае будет отсутствовать перегреватель. Поэтому на турбину будет поступать насыщенный пар. На рис.7.2,а изображен цикл Ренкина в TS-диаграмме.

3-1 – подвод теплоты от источника в воде q1, состоит из двух процессов: 3-3/ — кипение воды в котле;

3/-1 – испарение воды в пар при постоянном давлении;

1-2 – в турбине пар расширяется адиабатически;

2-2/ — пар конденсируется и отдает тепло q2 охлаждающей воде;

2/-3 – конденсат адиабатически сжимается.

Термический к.п.д. цикла Ренкина определяется по уравнению:

ht = (q1 – q2)/q1 . (7.1)

Так как: q1 = h1 – h3 ; q2 = h2 – h2/ , то

ht = [(h1 – h2) — (h3 – h2/)] /( h1 – h3) = l / q1. (7.2)

Полезная работа цикла равна разности работ турбины и насоса:

где: lт = h1 – h2 , lн = h3 – h2/ .

В основном lт >> lн , тогда считая h3 = h2/ , можно записать:

ht = (h1 – h2)/( h1 – h3) . (7.3)

Теоретическуя мощность турбины рассчитывают по формуле:

Nт = (h1 – h2)·D/3600 , [Вт] (7.4)

где: D = 3600·m – часовой расход, [кг/ч]

m – секундный расход, [кг/с]

29 Холодильные установки- устройства для получения и непрерывного поддерживания температуры ниже температуры окружающей среды.

Вопрос №29.Схема и цикл воздушной холодильной установки.

q1 P q1

компрессор

Охладит. камера

детандер

теплообменник

t °окр. 3 2

q2 4 1

-80°C -10°C q2 v

1-2: адиабатное сжатие возд. Компрессором с повышением температуры.

2-3: охлаждение воздуха в теплообменнике до t °окр среды

3-4: адтабатич. Расширение в детандре с резким падением t. T4=T3(p4/p3)^(k-1)/k

4-1: холодный воздух забирает тепло из охлож. Помещения

Эффективность: q2/lц = q2/ q1-q2 nt=l/ q1= q1-q2 /q1

Q=G*q2

недостатки: -низкий холодильный коэффициент 2-2,2

-низкая холодопроводимость и большой расход возд.

Динамика м кинематика потока газа в центробежных и осевых компрссорах

Основные уравнения газодинамики

Движение газового потока в проточной части лопастных компрессоров имеет сложный пространственный характер. Параметры потока (скорость, давление, плотность, температура) в различных сечениях имеют разные значения и зависят от времени. Обычно же с целью упрощения течение газа в компрессоре принимается установившимся, т. е. независимым от времени. Для вывода основных уравнений движения газа в лопастном компрессоре исходят из представления элементарной струйки газа, у которой в любом поперечном сечении изменением вышеназванных параметров можно пренебречь.

В теории лопастных компрессоров большое значение имеют уравнения постоянства массового расхода (уравнение неразрывности), количества движения и момента количества движения и уравнение энергии в абсолютном и относительном движении.

Уравнение количества движения

Фундаментальная теорема механики — импульс внешней силы равен изменению количества движения материальной системы — применительно к потоку газа в каналах лопастной машины может быть выражена уравнением,
где Р — сила, действующая со стороны потока на лопасть; G — массовый секундный расход; сть стг — средние значения скоростей в начальном и конечном сечениях.

Уравнение моментов количества движения

где М — момент, прилагаемый к массе газа G, необходимый для увеличения момента количества движения; r1, r2—соответственно радиусы начального и конечного сечений потока; с — проекции абсолютных скоростей в этих сечениях на направление окружных скоростей.

Уравнение энергии в абсолютном и относительном движении

Механический принцип рабочих процессов лопастных динамических машин, подающих непрерывную среду (жидкость или газ), одинаков: лопасти, взаимодействуя с потоком, повышают его энергию. Однако жидкость почти несжимаема, а газ сжимаем существенно, и его плотность определяется зависимостью от давления и температуры. Это обстоятельство, а также большое различие в процессах трения жидкостей и газов приводят к существенному различию физических процессов лопастных машин для сжимаемых и несжимаемых сред. В рабочих процессах лопастных компрессоров имеют место термодинамические явления.

Из уравнения следует, что энергия, сообщенная газу, расходуется на сжатие и изменение кинетической энергии газа. Член представляет собой статический напор лопастного компрессора. При течении газа в неподвижном канале, где энергия газу не сообщается и потери пренебрежимо малы.

Уравнение (4.6) называют уравнением Бернулли для установившегося абсолютного движения газа в неподвижном канале. Каналы проточной части лопастного компрессора имеют специфическую форму; некоторые из них, например межлопастные каналы рабочего колеса, вращаются.

Поэтому использование уравнений теоретической газомеханикидля расчета потоков в каналах лопастного компрессора должно проводиться с учетом их особенностей и в некоторых случаях с применением опытных коэффициентов.

Течение идеального газа в .межлопастных каналах колеса центробежного компрессора

Кинематика потока в центробежном колесе

Все лопасти рабочего колеса центробежного компрессора можно рассматривать как круговую решетку, вращающуюся с угловой скоростью. До настоящего времени газодинамика потока в таких решетках с конечным шагом лопастей недостаточно изучена. Поэтому применяются упрощенные схемы, рассматривающие течение потока в отдельных межлопастных каналах, образованных соседними лопастями.

Рассмотрим движение идеального газа во вращающемся канале произвольной формы (рис. 4.1). При постоянной ω относительное движение в межлопастных каналах можно полагать установившимся.

Абсолютная скорость с в таком потоке представляет собой векторную сумму относительной W (относительно стенок канала) и переносной (вращение вокруг оси колеса) скорости. Окружная (переносная) скорость на произвольном радиусе равна u = rw. W определяют по объемному расходу q через канал и геометрическим размерам живого сечения канала.

Результирующую абсолютную скорость с определяют построением параллелограмма скоростей. Как будет указано ниже, энергетические качества рабочего колеса определяются главным образом кинематическими соотношениями на входе 1 и выходе 2 рабочего колеса. Обычно вместо параллелограммов строят треугольники скоростей (рис. 4.2).

Составляющая абсолютной скорости сы характеризует закрутку потока при входе на лопасти. Иногда в компрессорах имеет место радиальный (без закрутки) вход потока на лопасти (рис. 4.2), треугольник скоростей для такого случая изображен штриховыми линиями. Составляющая С характеризует энергию, передаваемую газу в рабочем колесе центробежного компрессора. Радиальные составляющие абсолютной скорости определяют объемный расход на входе в колесо и выходе из него.

Механизм передачи энергии в центробежном рабочем колесе

Силовые поля потоков во вращающихся и неподвижных каналах различны.

Кроме сил, вызванных изменением величины и направления W, здесь возникает центробежная сила, вызываемая вращением в переносном движении и сила инерции, вызываемая кориолисовым ускорением. Следовательно, уравнение Бернулли в виде (4.6) в данном случае неприемлемо. К этому уравнению необходимо добавить члены, учитывающие упомянутое различие силового поля.

Равновесие сил, действующих на частицу идеального газа в направлении касательной к ее траектории s в относительном движении по принципу Даламбера, выражается уравнением,
где s — длина пути частицы; р — угол перемещения частицы в относительном движении.

Силы Кориолиса и силы, обусловленные давлением, в направлении оси п, а также сила, возникающая от поворота потока в относительном движении, направлены нормально к траектории и в условии равновесия не учитываются. Сила массы газа также не учитывается вследствие ее малости (рис. 4.1).

Степень реактивности колеса центробежного компрессора

Как следует из уравнения Эйлера, теоретический напор колеса центробежного компрессора зависит от значений u и c (при с = 0).

Для обеспечения требуемого значения действительного напора Я приходится применять различные формы лопастей рабочего колеса, обеспечивающие различные значения С2и при заданной иг. Величина игСги изменяется в широких пределах. При расчете компрессоров проектант должен знать, какую долю составляет потенциальная энергия в общей энергии, передаваемой газу в рабочем колесе. Это отношение называют степенью реактивного р и при c = 0 определяют выражением.

Отношение и угол потока на выходе из рабочего колеса в значительной степени определяют значения H и р (рис. 4.3). С увеличением С возрастает величина H.

Для предельного случая рабочее колесо создает максимальный теоретический напор в форме динамического (р = 0). Соотношение С и р зависят от 0β2.

На рис. 4.3 изображены три возможные формы лопасти при одинаковых β1, D1, D2 и С2г и соответствующее распределение энергий, поКак следует из рис. 4.3, для получения более высоких значений Ят следует выбирать повышенные значения Сги/нг- Однако это допустимо в определенных пределах. При лопастях, загнутых вперед (тип 3), основная часть приращения энергии создается в виде кинетической энергии, что приводит к большим потерям в неподвижных каналах ступени, так как каналы рабочего колеса имеют неблагоприятную форму для потока. Все это снижает КПД компрессора. Кроме того, лопасти, загнутые вперед, имеют неблагоприятные акустические качества. Рабочие колеса с такими лопастями применяются в маломощных вентиляторах. Радиальные лопасти (тип 2) применяются в нагнетателях холодильных центробежных компрессоров. Лопасти, загнутые назад (тип 1), нашли широкое применение в многоступенчатых компрессорах большой мощности.

Учет влияния конечного числа лопастей колеса центробежного компрессора

Формулы получены в предположении полной осевой симметрии потока газа в межлопастных каналах рабочего колеса, т.е. при постоянстве скоростей в выходном сечении на окружности диаметра. Это теоретически возможно при бесконечно большом количестве бесконечно тонких лопаток. При этом скорость совпадает с направлением касательной к лопасти. В этом случае суммарное приращение энергии в колесе получается простым суммированием по окружности энергий множества элементарных струек. Схема бесконечного числа лопастей была использована Эйлером и является исходным условием для приближенного определения Hт.

В действительности при конечном числе лопастей картина течения в межлопастных каналах имеет иной вид (см. рис. 4.1).

Согласно гипотезе поток в межлопастном канале можно получить путем сложения двух потоков: потока протекания и потока осевого вихря, интенсивности ω.

При сложении этих потоков (рис. 4. Г) относительная скорость на передней стороне лопасти уменьшается, a на тыльной увеличивается по сравнению со скоростью потока протекания. По уравнению Бернулли происходит изменение давления, что соответствует ранее рассмотренной картине.

В межлопастном канале на входе и выходе имеются окружные составляющие относительных скоростей.

Коэффициент р зависит от многих факторов. Несмотря на многочисленные попытки, не удалось до настоящего времени получить вполне строгое общее выражение для определения μ. Используют приближенные полузначения коэффициента р, колеблются в пределах среднестатической величины (л « 0,8.

С учетом неравномерности распределения скоростей на входе и выходе колеса полная удельная энергия (работа), переданная 1 кг массы газа, которая называется теоретическим -напором Нт, определяется выражением.

Следовательно, для определения удельной энергии, передаваемой потоку рабочим колесом, необходимо знать значения моментов скоростей (циркуляции) на входе и выходе лопастей. Величину моментов определяют экспериментально.

При рассмотрении течения газа во вращающейся круговой решетке за основу принята схема плоского (двухмерного) потока, который наиболее часто встречается в центробежных компрессорах. Если в межлопастных каналах рабочих колес имеет место пространственный (трехмерный) поток, то в этом случае приходится учитывать ряд дополнительных обстоятельств — вторичные течения, перетечки и др.

Одним из способов анализа пространственное™ потока является разбивка полости канала на ряд элементарных полостей, поверхностями вращения Ьимметричными оси колеса. В полученных элементарных полостях поток можно принимать плоским и использовать описанные выше методы.

Внутренний напор ступени центробежного компрессора

Внутренний напор ступени многоступенчатого компрессора Я,- определяет собой полную энергию, сообщенную каждому 1 кг массы газа в ступени компрессора,
где Hт — теоретический напор лопастного колеса; Hд.т — потери напора на дисковое трение; Hд, — потери напора от утечек через уплотнения колеса (Hд. т и Hд, отнесены к 1 кг массы газа).

Потери Hд. т возникают из-за трения в слоях газа близ поверхности дисков рабочего колеса.

Потери в центробежном компрессоре происходят в основном через переднее уплотнение лопастного колеса, в осевом компрессоре — между бандажом колеса и корпусом компрессора (при наличии такового).

Потери взаимно влияют друг на друга, поэтому их разделение весьма условно. (В осевых компрессорах рассмотренные выше потери незначительны, поэтому на практике ими пренебрегают)

В центробежных компрессорах применяют коэффициент закрутки потока.

Коэффициент зависит от числа лопаток и выходного угла лопаток колеса. Суммарный коэффициент, учитывающий относительные потери изменяется в пределах 1,2 ÷ 1,5.

Параметры профиля и плоской решетки профилей осевого компрессора

Течение газа в пространственных решетках рабочих колес и направляющих аппаратов имеет сложный характер. В теории и расчетах осевых компрессоров используются плоские решетки профилей, которые получаются сечением пространственных решеток рядом соосных цилиндрических поверхностей произвольного радиуса и разверткой полученных сечений на плоскость.

В результате получают плоскую решетку профилей, расположенных на одинаковом расстоянии друг от друга. При ориентировочном рассмотрении течения газа в плоской решетке осевого компрессора (плоский поток) радиальной составляющей скорости газа и взаимным влиянием профилей пренебрегают.

На рис. 4.4,а показана плоская решетка профилей, а на рис. 4.4,б — отдельный профиль. Средняя (скелетная) линия профиля — это кривая линия, разделяющая на равные части расстояние между выпуклой и вогнутой кромкой профиля, измеренное по нормали к этой линии. Среднюю линию можно построить вписанием окружностей в тело профиля. Хордой профиля называют линию, соединяющую крайние точки средней линии. За толщину профиля принимают расстояние между выпуклой и вогнутой кромками профиля, измеренное нормально к хорде, либо расстояние, измеренное нормально к средней линии профиля (т. е. диаметры вписанных окружностей). Кривизна профиля характеризуется углом Ф = θ1 + θ2, где углы θ1 и θ2 — углы между хордой и касательными к средней линии на входё и выходе профиля. Входная и выходная кромки профиля закругляются радиусами r1 и г2.

Все размеры, характеризующие профиль, могут быть представлены как относительные величины путем деления их на длину хорды.

Плоская решетка профилей характеризуется следующими величинами. Шаг решетки это расстояние между соседними профилями, измеренное по соответственным точкам профилей.

Относительный шаг решетки — это отношение шага решетки к длине хорды, т.е. который характеризует густоту решетки.

Ширина решетки — это размер решетки, параллельно оси вала компрессора. Геометрические углы входа и выхода лопастей решетки — это углы между касательными к средней линии профиля на входе и выходе и направлением оси решетки.

Угол установки профиля в решетке — это угол между хордой профиля и осью решетки. Кривизну профиля можно выразить через углы.

Поток газа, обтекающий решетку профилей, характеризуется входным углом β1 и выходным углом β2- Входной угол β1 — это угол между направлением относительной скорости на входе решетки и осью решетки. Выходной угол β2— это угол между направлением относительной скорости на выходе решетки и осью решетки. Разница между углами β2 и β1 называется углом закрутки потока. Угол атаки на входе решетки i—это угол между касательной к средней линии на входе профиля и относительной скоростью.

Угол отставания потока — это угол между касательной к средней линии на выходе профиля и относительной скоростью.

Силовое взаимодействие между прямолинейной решеткой профилей и потоком газа осевого компрессора. теорема жуковского

При обтекании профиля плоским потоком идеального газа со скоростью вследствие разных давлений на выпуклой и вогнутой сторонах профиля возникает подъемная сила. Подъемная сила перпендикулярна скоростии согласно теореме Жуковского для несжимаемой жидкости определяется на единицу длины профиля уравнением.

Теорема Жуковского действительна и для решетки профилей, если вместо скорости невозмущенного потока в уравнение ввести среднегеометрическую скорость.

КПД решетки

В осевых компрессорах применяются в основном диффузорные решетки, увеличивающие давление газового потока за счет понижения относительной скорости W.

Давление, развиваемое решеткой, работающей на реальном газе, отличается от давления, получаемого в ней прих идеальном газе при прочих равных условиях. Причиной этого является в основном газовое сопротивление межлопастных каналов, требующее для его преодоления определенных затрат энергии. Рассматривая идеальное и реальное течения при одинаковом расходе через решетку, т.е. при одинаковых скоростях на входе и выходе, перепад давлений в реальном потоке отличается от перепада давлений идеального потока, так как в реальном потоке часть перепада расходуется на гидравлические потери.

Кинематика течения в ступени осевого компрессора

Рассмотрим работу ступени осевого компрессора, состоящей из решеток вращающегося рабочего колеса и неподвижного направляющего аппарата (4.6,а). Сечением решеток ступени соосной цилиндрической поверхностью произвольного радиуса и разверткой получаем плоскую решетку профилей рабочего колеса и направляющего аппарата.

Считая радиальную составляющую скорости незначительной и пренебрегая ее влиянием, получаем равенство меридиональной и осевой составляющей скорости. Плоская решетка рабочего колеса движется с переносной скоростью и = const. Так как с — абсолютная скорость газа перед решеткой рабочего колеса, построив вектор переносной скорости и, получаем вектор относительной скорости с которой газ поступает на вращающуюся решетку колеса. Скорости образуют так называемый входной треугольник скоростей перед решеткой.

Так как W2 — относительная скорость газа на выходе решетки, добавив к ней вектор переносной скорости u1 получаем абсолютную скорость с2 на выходе из решетки. Скорости с2, и, W2 образуют так называемый выходной треугольник скоростей за решеткой.

На входе и выходе решетки рабочего колеса осевые составляющие скорости соответственно сг\ и сг2. В осевых компрессорах осевая скорость с обычно постоянна либо несколько уменьшается от первой к последней ступени.

На рис. 4.6,б, в показаны совместно скоростные треугольники на входе и выходе решетки рабочего колеса. Здесь же показана среднегеометрическая скорость

Поток газа поступает на решетку направляющего аппарата со скоростью С2 и покидает решетку со скоростью С3, несколько меньшей С2 из-за диффузорного эффекта.

Напор ступени осевого компрессора

Теоретический напор осевого компрессора представляет собой энергию, передаваемую лопатками рабочего колеса каждому 1 кг газа, проходящему через него.

Сообщение энергии материальной системе, в том числе газу, возможно только в процессе движения приложением внешней силы. Такой силой для потока газа в межлопастных каналах решетки является подъемная сила, вычисленная по формуле Жуковского.

Для существования такой силы должна иметь место разность давлений на передней и тыльной сторонах лопасти. Если обозначить через давление в середине канала на радиусе, то должно выполняться условие. В результате обтекания газовым потоком лопасти и образования перепада давления на передней и тыльной сторонах лопатки образуется циркуляционный поток. Суммарная циркуляция лопаток равна разности циркуляций на входе в колесо и выходе из него.

Теоретический напор можно выразить через циркуляцию скорости профиля решетки.

Основные кинематические схемы осевых компрессоров

В осевых компрессорах степень реактивности обычно лежит в пределах 0,5 ÷ 1,0. При р 1 происходит скачкообразное изменение параметров потока. Обратный переход от сверхзвуковых к дозвуковым значениям скоростей нельзя осуществить плавно. При переходе скорости звука в рабочей среде имеет место скачкообразное изменение параметров потока р, р и Т. Такой процесс называют скачком уплотнения (стоячей ударной волной). Скачок уплотнения сопровождается сильными акустическими явлениями (подобными преодолению звукового барьера самолетом).

При скачке уплотнения происходит резкое снижение КПД компрессора (подобно снижению КПД при кавитации в насосе). Снижение КПД в значительной степени вызвано увеличением сопротивления при обтекании профиля из-за интенсивного отрыва пограничного слоя при скачке уплотнения. При скачках уплотнения происходит необратимое преобразование кинетической энергии газа в теплоту, возникает свойственное только сверхзвуковым потокам волновое сопротивление.

На рис. 4.8 показана качественная картина дозвукового и сверхзвукового обтекания профиля.

Опасность возникновения скачка уплотнений в центробежных компрессорах относительно меньше.

Стационарные компрессоры рекомендуется выполнять при максимальных значениях числа Маха М 0,75 можно принять
ε’ = (1 — М2)ε,
где ε ≈ 8° — оптимальный угол раскрытия диффузора для несжимаемого газа.

Основы теории подобия. безразмерные коэффициенты

Лопастные компрессоры относятся к классу динамических машин. Явления, происходящие в потоке газа в проточной части, должны подчиняться общим законам динамического подобия. Поток газа в проточной части компрессора движется с высокими скоростями и, следовательно, с высокой степенью турбулентности (в квадратичной зоне режимов течения). В связи с этим условия динамического подобия течения могут выполняться, если обеспечить прежде всего требования геометрического и кинематического подобия.

Компрессоры обычно создаются сериями с геометрически подобной формой проточной части, и рабочие параметры их подчиняются основным законам подобия.

Основные критерии подобия лопастных компрессоров

При изучении подобия газодинамических процессов в лопастных компрессорах рассматриваются следующие безразмерные критерии:

  • число Маха — М, характеризующее режим течения при скоростях, превышающих скорость звука в газовой среде, подаваемой компрессором;
  • число Рейнольдса — Re, характеризующее режим течения при скоростях, меньших скорости звука;
  • число Прандтля — Рг, оценивающее влияние тепломеханических характеристик газа на его движение и теплообмен);
  • число Нуссельта — Nu, определяющее влияние теплообмена газа при его движении.

К этим четырем критериям следует добавить показатель адиабаты k. Однако выполнение равенства всех критериев подобия для двух геометрически подобных потоков невозможно.

Например, равенство чисел Re и М возможно лишь в случае, если рассматриваемые системы каналов не только подобны, но и равны по размерам. Для газовых потоков с разными показателями адиабаты невозможно сочетать геометрическое и кинематическое подобие во всех сходственных сечениях двух лопастных компрессоров. Поэтому применяется приближенное подобие, допускающее нарушение таких критериев подобия, которые в данном конкретном случае не являются определяющими.

В неохлаждаемых группах ступеней компрессорных машин процессы теплопередачи существенного значения не имеют, поэтому критерии Прандтля и Нуссельта в этих случаях можно не учитывать. Число Re оказывает влияние на характер течения.

В пределах значений М 0,8);

  • кинематическом подобии потоков (подобие планов скоростей в сходственных сечениях);
  • равенстве показателей адиабаты к двух потоков.
  • Необходимо отметить, что число Рr для газов с одинаковыми к (равной атомности) практически одинаковы.

    В проточной части компрессора аналитическое определение основных технических характеристик с использованием методов газодинамики довольно сложно. Поэтому если известны характеристики проточной части какого-то компрессора или его ступени (обозначим индексом м), то при выполнении условий подобия можно определить характеристики разрабатываемого компрессора (индекс н).

    Масштаб геометрического подобия (коэффициент пересчета)

    При широком диапазоне изменения значений Хы и т обеспечить точное соблюдение условий подобия трудно.
    В качестве критерия подобия в компрессоростроении используют также коэффициент быстроходности, об/мин.

    Под коэффициентом быстроходности подразумевается частота вращения ступени эталонного компрессора (геометрически подобного проектируемому), который, работая на аналогичном газе при производительности VM = 1 м³/с, создает напор Ям = 1 м.

    В многоступенчатых компрессорах значение пул меняется из-за изменения объемной производительности по ступеням.

    Ступени с равным нуд имеют одинаковые характерные геометрические и кинематические соотношения проточной части и одинаковую безразмерную характеристику. Создаваемые серии компрессоров обычно имеют проточную часть с одинаковым Пуд.

    Для энергетической и размерной характеристик ступеней используются безразмерные коэффициенты, которые также зависят от пуд. К ним относятся:

    • коэффициент напора (давления). Это коэффициент, характеризующий соотношение между окружной скоростью u2 и действительным напором (повышением давления), не совсем точен, так как не учитывает изменения гидравлического КПД в подобных ступенях различных геометрических размеров. Его используют для приближенных расчетов;
    • коэффициент расхода (производительности)
    • коэффициент полезной мощности

    Коэффициенты определяют пропускную способность, энергоемкость и размеры сечений проточной части серии подобных ступеней и используются для построения безразмерной характеристики для серий подобных машин.

    Значения коэффициента ср изменяются в пределах:

    • для центробежных компрессоров φ = 0,03 ÷ 0,15;
    • для диагональных компрессоров φ = 0,1 ÷ 0,2.

    Приняв соответствующие значения φ и имея заданные параметры V, Н и n, можно определить ориентировочно габаритный размер рабочего колеса и требуемое значение u2. По выбранным значениям входной скорости в рабочее колесо (обычно с = 20 ÷ 100 м/с) и коэффициенту φ можно оценить диаметр D0 входной воронки рабочего колеса.

    Таким образом, n, φ и ψ служат исходными величинами для определения размеров элементов проточной части центробежного компрессора на заданные параметры.


    источники:

    http://megaobuchalka.ru/17/33322.html

    http://www.artkompressor.ru/kompressornye-mashiny/dinamika-m-kinematika-potoka-gaza/