Уравнение процесса это уравнение связывающее

Физическая химия: конспект лекций.

5. Процессы. Второй закон термодинамики.

Второй закон термодинамики, в отличие от первого закона термодинамики, изучает все процессы, которые протекают в природе, и эти процессы можно классифицировать следующим образом.

Процессы бывают самопроизвольные, несамопроизвольные, равновесные, неравновесные.

Самопроизвольные процессы делятся на обратимые и необратимые. Второй закон термодинамики называют законом направленности процесса в изолированной системе (закон роста S). Слово «энтропия» создано в 1865 г. Р. Ю. Э. Клаузиусом – «тропе» с греческого означает превращение. В 1909 г. профессор П. Ауербах назвал царицей всех функций внутреннюю энергию, а Sтенью этой царицы. Энтропия – мера неупорядоченности системы.

Обратимые и необратимые процессы.

Необратимые процессы идут без затраты работы, протекают самопроизвольно лишь в одном направлении, это такие изменения состояния в изолированной системе, когда при обращении процессов свойства всей системы меняются. К ним относятся:

1) теплопроводность при конечной разности температур;

2) расширение газа при конечной разности давлений;

3) диффузия при конечной разности концентраций.

Обратимыми процессами в изолированной системе называются такие процессы, которые можно обратить без каких-либо изменений в свойствах этой системы.

Обратимые: механические процессы в системе, где отсутствует трение (идеальная жидкость, ее движение, незатухающие колебания маятника в вакууме, незатухающие электромагнитные колебания и распространение электромагнитных волн там, где нет поглощения), которые могут возвратиться в начальное состояние.

Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, Nа с большой скоростью движется по поверхности, так как идет выделение водорода проверить.).

Несамопроизвольные – процессы, которые не могут идти сами собой, на них затрачивается работа.

Равновесие делится на устойчивое, неустойчивое и безразличное.

Постулаты второго закона термодинамики.

1. Постулат Клаузиуса – не может быть перехода тепла от менее нагретого к более нагретому телу.

2. Постулат Томсона – теплота наиболее холодного тела не может служить источником работы.

Теорема Карно – Клаузиуса: все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела.

Аналитические выражения второго закона термодинамики.

1. Классическое уравнение второго закона термодинамики.

Q2 / Т2 приведенное тепло холодильника;

Q11= Q22 равенство приведенных теплот нагревателя и холодильника. Это второе уравнение термодинамики.

Если делим адиабатами на множество циклов Карно, то получим.

Это третье уравнение второго закона термодинамики для бесконечно малого цикла Карно.

Если процесс является конечным, то.

Это четвертое уравнение второго закона термодинамики Если процесс является замкнутым, то.

Это пятое уравнение второго закона термодинамики для обратимого процесса.

Интеграл по замкнутому контуру – интеграл Клаузиуса.

При необратимом процессе:

Это шестое уравнение второго закона термодинамики, или уравнение Клаузиуса, для обратимого процесса равно нулю, для необратимого процесса оно меньше 0, но иногда может быть больше 0.

Это седьмое уравнение второго закона термодинамики. Второй закон термодинамики – закон роста S.

Действие, обратное логарифму – потенцирование:

Первый закон термодинамики определяется постоянством функции U в изолированной системе. Найдем функцию, выражающую содержание второго закона, а именно, одностороннюю направленность протекающих в изолированной системе процессов. Изменение искомой функции должно иметь для всех реальных, т. е. необратимых процессов, протекающих в изолированных системах, один и тот же знак. Второй закон термодинамики в приложении к некруговым необратимым процессам должен выражатся неравенством. Вспомним Цикл Карно. Так как любой цикл можно заменить бесконечно большим числом бесконечно малых циклов Карно, то выражение:

Справедливо для любого обратимого цикла. Считая на каждом элементарном участке теплообмена Т = соnst, найдем, что:

И для всего цикла.

Энергия Гельмгольца Изохорно-изотермический потенциал.

Величина (V – ТS) является свойством системы; она называется энергией Гельмгольца. Была введена Гельмгольцем в 1882 г.

dF = dU – ТdS – SdТ,

dF = ТdS – рdV – SdТ,

F – полный дифференциал.

Увеличение объема приводит к тому, что изохорно-изотермический потенциал уменьшается (тот «минус», который стоит перед Р ). Повышение температуры приводит к тому, что F уменьшается.

Физический смысл изохорно-изотермического потенциала.

Убыль изохорно-изотермического потенциала равна максимальной работе, производимой системой в этом процессе; F – критерий направленности самопроизвольного процесса в изолированной системе. Для самопроизвольного процесса: АFТ г 0. Для равновесного процесса: ΔFТ,V = 0.

Изохорно-изотермический потенциал в самопроизвольных процессах уменьшается и, когда он достигает своего минимального значения, то наступает состояние равновесия (рис. 4).

Где 1 – самопроизвольный процесс;

2 – несамопроизвольный процесс;

3 – равновесный процесс.

Изобарно-изотермический потенциал.

1) G (Р, Т= соnst), энергия Гиббса.

G = U – ТS + РV = Н – ТS = F + РV,

Работа изобарно-изотермического процесса равна убыли изобарно-изотермического потенциала – физический смысл этой функции;

2) функция – полный дифференциал, однозначна, конечна, непрерывна.

dG = dU – ТdS – SdТ + рdv + vdр,

dG = ТdS – рdV – ТdS – SdТ + рdv + vdр,

Повышение температуры приводит к тому, что изобарно-изотермический потенциал уменьшается, так как перед S стоит знак «минус». Повышение давления приводит к тому, что изобарно-изотермический потенциал увеличивается, так как перед V стоит знак «плюс»;

3) G как критерий направленности процесса в изолированной системе.

Для самопроизвольного процесса: (ΔG)Р,Т 0. Для равновесного процесса: (ΔG)Р,Т = 0.

Изобарно-изотермический потенциал в самопроизвольных процессах уменьшается, и, когда он достигает своего минимума, то наступает состояние равновесия.

Где 1 – самопроизвольный процесс;

2 – равновесный процесс;

3 – несамопроизвольный процесс.

Совершается работа за счет ΔU и ΔН.

Противодействующие факторы. Энтальпийный фактор характеризует силу притяжения молекул. Энтропийный фактор характеризует стремление к разъединению молекул.

Энтальпия – Н Внутренняя энергия – U.

dН = dU + рdv + vdр,

dU = ТdS – SdТ + рdV + Vdр,

dН = –рdV + рdV + Vdр; U = ТdS + VdР.

Где 1 – самопроизвольный процесс,

2 – несамопроизвольный процесс,

3 – равновесный процесс,

Уравнения Гиббса – Гельмгольца – уравнения максимальной работы.

Они позволяют установить связь между максимальной работой равновесного процесса и теплотой неравновесного процесса.

Уравнение Гельмгольца (уравнение связывающее функции F и G с их температурными производными).

Уравнение Гиббса (уравнение связывающее функции F и G с их температурными производными).

Уравнения эти дают возможность рассчитать работу через температурный коэффициент функции Гельмгольца или через температурный коэффициент функции Гиббса.

Уравнение Клаузиуса-Клапейрона.

Оно позволяет применить второй закон термодинамики к фазовым переходам. Если рассчитать процессы, в которых совершается только работа расширения, то тогда изменение внутренней энергии.

Предположим, что 1 моль вещества переходит из первой фазы во вторую.

Нет условного равновесия,

Где dР/dТ – температурный коэффициент давления,

Где λфп – теплота фазового перехода.

Уравнение Клаузиуса-Клапейрона, дифференциальная форма уравнения.

Уравнение устанавливает взаимосвязь между теплотой фазового перехода, давлением, температурой и изменением молярного объема.

Эмпирическая форма уравнения Клаузиуса-Клапейрона.

Уравнение Клаузиуса-Клапейрона изучает фазовые переходы. Фазовые переходы могут быть I рода и II рода.

I рода – характеризуются равенством изобарных потенциалов и скачкообразными изменениями S и V.

II рода – характеризуются равенством изобарных потенциалов, равенством энтропий и равенством молярных объемов.

Алгебраическая сумма приведенных теплот для любого обратимого кругового процесса равна нулю.

Эта подынтегральная величина – дифференциал однозначной функции состояния. Эта новая функция была введена Клаузиусом в 1865 г. и названа энтропией – S (от греч. «превращение»).

Любая система в различном состоянии имеет вполне определенное и единственное значение энтропии, точно так же, как определенное и единственное значение Р, V, Ти других свойств.

Итак, энтропия выражается уравнением:

Где S – это функция состояний, изменение которой dSв обратимом изотермическом процессе перехода теплоты в количество Q равно приведенной теплоте процесса.

При независимых переменных U (внутренняя энергия) может обозначаться UВН и V (объем), или Р (давление) и Н(энтальпия). Энтропия является характеристической функцией. Характеристические функции – функции состояния системы, каждая из которых при использовании ее производных дает возможность выразить в явной форме другие термодинамические свойства системы. Напомним, в химической термодинамике их пять:

1) изобарно-изотермический потенциал (энергия Гиббса) при независимых переменных Т, Р и числе молей каждого из компонентов и.;

2) изохорно-изотермический потенциал (энергия Гельмгольца) при независимых переменных Т, V, ni;

3) внутренняя энергия при независимых переменных: S, V, ni;

4) энтальпия при независимых переменных: S, Р, пi;

5) энтропия при независимых переменных Н, Р, ni..

В изолированных системах (U и V= соnst) при необратимых процессах энтропия системы возрастает, dS > 0; при обратимых – не изменяется, dS = 0.

Связь энтропии с другими термодинамическими параметрами.

Для того, чтобы решить конкретную задачу, связанную с применением энтропии, надо установить зависимость между ней и другими термодинамическими параметрами. Уравнение dS = δQ/Т в сочетании с δQ = dU + РdV и δQ = dН – VdР дает уравнения:

Применительно к функциональной зависимости φ(Т, V, S) = 0, получим.

Теперь найдем зависимость энтропии от температуры из уравнений:

Вот эти зависимости:

Эти два уравнения являются практически наиболее важными частными случаями общего соотношения:

Пользуясь разными зависимостями, можно вывести другие уравнения, связывающие термодинамические параметры.

Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, натрий с большой скоростью движется по поверхности, так как идет выделение водорода), а калий буквально «прыгает» по воде.

Несамопроизвольные – процессы, которые не могут идти сами собой, на них затрачивается работа.

Равновесие делится на устойчивое, неустойчивое и безразличное.

Постулаты второго закона термодинамики.

1. Постулат Клаузиуса – «Не может быть перехода тепла от менее нагретого к более нагретому телу».

2. Постулат Томсона – «Теплота наиболее холодного тела не может служить источником работы».

Теорема Карно-Клаузиуса: «Все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела».

Аналитические выражения второго закона термодинамики.

1. Классическое уравнение второго закона термодинамики.

Где Q /Т – приведенное тепло;

Q2 / Т2 приведенное тепло холодильника;

Q11= Q2 / Т2 равенство приведенных теплот нагревателя и холодильника. Это второе уравнение термодинамики.

Если делим адиабатами на множество циклов Карно, то получим.

Это третье уравнение второго закона термодинамики для бесконечно малого цикла Карно.

Если процесс является конечным, то.

Это четвертое уравнение второго закона термодинамики.

Если процесс является замкнутым, то.

Это пятое уравнение второго закона термодинамики для обратимого процесса.

Интеграл по замкнутому контуру – интеграл Клаузиуса.

При необратимом процессе:

Шестое уравнение второго закона термодинамики, или уравнение Клаузиуса, для обратимого процесса равно нулю, для необратимого процесса оно меньше 0, но иногда может быть больше 0.

Это седьмое уравнение второго закона термодинамики. Второй закон термодинамики – закон роста S.

Термодинамическая вероятность.

Это формула Больцмана,

Где S – энтропия – степень разупорядоченности системы;

к– постоянная Больцмана;

W – термодинамическая вероятность системы макросостояний.

Термодинамическая вероятность – число микросостояний данной системы, с помощью которых можно реализовать данное макросостояние системы (Р, Т, V).

Если W = 1, то S = 0, при температуре абсолютного нуля –273°С все виды движений прекращаются.

Термодинамическая вероятность – это число способов, которыми атомы и молекулы можно распределить в объеме.

Уравнение процесса.

В лекции 2 довольно кратко уже говорилось о политропе, теперь – подробнее.

Уравнение политропического процесса имеет вид:

pv n = const, n = const.

Но это не единственная форма связи параметров состояния, возможны комбинации:

pT n ΄ = const, n΄ = const или vT n ΄΄ = const, n΄΄= const.

Далее, для примера, будем работать с уравнением pv n = const, n = const.

На практике показатель политропы n находят экспериментально следующим образом:

pv n = const → lnp + nlnv = const → lnp = — nlnv + const.

Последнее выражение представляет собой уравнение прямой линии в координатах lnp – lnv. В эксперименте с каким-то веществом для различных условий измеряют давление р и удельный объем v с какой-то инструментальной точностью. Далее строят график в осях lnp – lnv (см. рис. 3. 1) и по нему находят показатель политропы n.

Рис. 3. 1. Иллюстрация к экспериментальному определению

показателя политропы n – индикаторная диаграмма

в логарифмических координатах. n = — tgα.

· — обозначение экспериментальных точек.

Истоки вывода уравнения pv n = const уходят в анализ работы реальных поршневых машин (паровых и компрессоров). При анализе их работы снимали индикаторную диаграмму p = f(x), где х – ход поршня. От индикаторной диаграммы всего один шаг до p – v диаграммы.

Показатель политропы n в уравнении pv n = const в сущности отражает интенсивность изменения параметров в процессе, т.е. характер смены состояний. А параметры изменяются под влиянием внешних воздействий q и w на термодеформационную систему. Поэтому мы в праве ожидать, что n = n(q,w). Проверим это ожидание.

Исходное уравнение политропы pv n = const в логарифмической форме

lnp = -nlnv + const

после дифференцирования принимает вид:

dp/p = -n dv/v или n = -vdp/pdv (3.1)

Иными словами: показатель политропы n есть отношение элементарной работы проталкивания к элементарной работе деформации (сжатия или расширения), и наши ожидания подтвердились.

Далее, вспомним первый закон термодинамики в форме

du = dq – dw → du = dq – pdv → pdv = dq – du; (3.2.1)

dh = dq +dw΄ → dh = dq +vdp → vdp = dh – dq; (3.2.2)

Подстановка (3.2.1) и (3.2.2) в (3.1) дает результат:

n = (dq – dh) / (dq –du). (3.3)

В лекции 2 подробно рассматривалось понятие теплоемкости и было показано, что dq = cdT. Одновременно, для идеального газа и любого процессабыли получены связи

Тогда зависимость (3.3) для идеального газа принимает вид:

Следовательно, показатель политропы n для идеального газа получил вполне определенный смысл – это функция теплоемкостей.

Из (3.4) попутно получим зависимость истинной политропной теплоемкости сn от показателя политропы n , чтобы можно было рассчитывать количество теплоты так, как это принято в калориметрии dq = cndT. Действительно (см. (3.4)),

В (3.5) величина k ≡ срv носит название коэффициента Пуассона и является показателем адиабаты. Для двухатомных газов k ≈ 1,4. Так как n = const и k = const, то (3.5) справедливо и для средней политропной теплоемкости:

Уравнения процесса

Уравнения процесса

  • Термодинамический процесс-это изменение состояния термодинамической системы, которое происходит в результате обмена энергией в виде работы и тепла. Термодинамический метод ранее показал, что только равновесные процессы могут быть посчитаны. Тем временем, система меняет свое состояние, не нарушая внутреннего равновесия. Кроме того, в каждый момент процесса параметры состояния системы являются N. Это удовлетворит R. V, T … В частности, для идеального газа, состояние параметр связан с уравнением по T в уравнение Клапейрона.

Типичными процессами, к которым можно применить зависимости, выведенные в части 2), являются, например, испарение и конденсация одной из компонент газовой смеси на твердой поверхности. Людмила Фирмаль

Поскольку это уравнение содержит 3 переменные в общем случае давление, объем и температура газа могут изменяться в течение процесса, необходимо дополнительное уравнение, которое дает закон изменения каждого параметра, чтобы полностью понять изменение параметров газа. Такое дополнительное уравнение является уравнением заранее определенного процесса. 5.

  • Изображение уравнений состояния и процессов на диаграмме состояния. Они настраивают аналитические зависимости между любыми двумя параметрами состояния. Таким образом, уравнением процесса являются уравнения p f a и T f t , с которыми мы уже сталкивались ранее. Аналогично уравнение процесса находится в зависимости p h CG f p , c 1 T Непрерывное изменение состояния системы в процессе графически иллюстрируется линией, описывающей состояние системы рис. 1-2 на поверхности состояния рис.5.1.Уравнение процесса представлено проекцией технологической линии на 1 координатную плоскость.

Предполагается, что поверхность, на которой измучается перенос массы, представляет собой поверхность раздела между газом и твердым телом или жидкостью или поверхность раздела между жидким и твердым веществами. Людмила Фирмаль

Отсюда и цифра 5.Для одного и того же процесса −2 можно задать 3 проекции 1, линия −2.Это будет графическое изображение уравнения процесса линия −2 T f y строка f −2 G — p строка G −2 — Вид, или, как правило, характер термодинамического процесса, определяется количественной зависимостью между теплотой и работой, которая изменяет состояние системы. Однако во многих случаях процесс характеризуется качеством, указывающим на условия, при которых он происходит. Например, процесс может указывать на то, что он имеет такую природу, что давление или температура, или другие параметры сохраняется constant.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://helpiks.org/4-96199.html

http://lfirmal.com/uravneniya-processa/