Уравнение прямой ab плоскости abc

Прямая на плоскости. Примеры решений

Решение проводим с помощью калькулятора.
Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).
1) Координаты векторов
Координаты векторов находим по формуле:
X = xj — xi; Y = yj — yi
здесь X,Y координаты вектора; xi, yi — координаты точки Аi; xj, yj — координаты точки Аj
Например, для вектора AB
X = x2 — x1; Y = y2 — y1
X = 1-2 = -1; Y = -2-1 = -3
AB(-1;-3)
AC(-3;-1)
BC(-2;2)
2) Модули векторов
Длина вектора a(X;Y) выражается через его координаты формулой:




3) Угол между прямыми
Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:

где a1a2 = X1X2 + Y1Y2
Найдем угол между сторонами AB и AC

γ = arccos(0.6) = 53.13 0
4) Проекция вектора
Проекцию вектора b на вектор a можно найти по формуле:

Найдем проекцию вектора AB на вектор AC

5) Площадь треугольника
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) — вершины треугольника, тогда его площадь выражается формулой:

В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:

Пример. Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).
Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.

Задание. Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:

  1. составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.
  2. составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.
  3. найти косинус внутреннего угла B треугольника ABC.

Сделать чертеж.

Пример №3. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB ; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.
Скачать

Пример №4. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C ; 2) уравнение медианы, проведенной через вершину C ; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.
Скачать

Пример №5. Даны вершины треугольника ABC: A(-5;0), B(7;-9), C(11;13). Определите: 1) длину стороны AB ; 2) уравнение сторон AB и AC и их угловые коэффициенты; 3) площадь треугольника.

  • Решение
  • Видео решение

Задание. Найти острый угол между прямыми x + y -5 = 0 и x + 4y — 8 = 0 .
Рекомендации к решению. Задача решается посредством сервиса Угол между двумя прямыми.
Ответ: 30.96 o

Пример №1. Даны координаты точек А1(1;0;2), A2(2;1;1), А3(-1;2;0), A4(-2;-1;-1). Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3. Найти объем треугольной пирамиды А1A2А3A4.

  • Решение
  • Видео решение

Задание. По координатам вершин пирамиды А1,А2,А3,А4 найти: 1) длины ребер А1А2 и А1А3; 2) угол между ребрами А1А2 и А1А3; 3) площадь грани А1А2А3;4) объем пирамиды А1А2А3А4
A1(3;5;4,0,0), A2(8;7;4,0,0), A3(5;10;4,0,0), A4(4;7;9,0,0):Пример №10

Пример. В декартовой прямоугольной системе координат даны вершины пирамиды A, B, C, D. Найдите длину ребра AB, косинус угла между векторами, уравнение ребра, уравнение грани, уравнение высоты.
Решение

Пример. Даны вершины треугольника А(1, –1, -3), В(2, 0, -10), С(3, 0, -2).
а) Найти уравнение биссектрисы и высоты данного треугольника, проведенных из вершины A .
б) Найти уравнения всех его медиан и координаты точки их пересечения.
см. также Как найти периметр треугольника

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Найти уравнение плоскости

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Уравнения прямой в пространстве

Параметрические уравнения прямой l в пространстве:

(15)

где – фиксированная точка прямой;

– направляющий вектор прямой l, т.е. любой вектор, параллельный l;

t – числовой параметр.

Каждому значению параметра соответствует единственная точка прямой l.

Канонические уравнения прямой:

. (16)

Уравнения прямой, проходящей через две данные точки и :

. (17)

Углом между прямыми называют угол между их направляющими векторами =<m1; n1; p1> и =<m2; n2; p2>, или дополнительный к нему (обычно берется острый угол), то есть

. (18)

Углом между плоскостью и прямой l (в случае их пересечения) называется угол между прямой и её проекцией на плоскость. Синус угла между плоскостью и прямой определяется по формуле:

. (19)

Примерный вариант и образец выполнения

РГЗ №1

Задача 1. Даны координаты вершин треугольника АВС:

Требуется: 1) вычислить длину стороны ВС;

2) составить уравнение стороны ВС;

3) найти внутренний угол треугольника при вершине В;

4) составить уравнение высоты АК, проведенной из вершины А;

5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан);

6) сделать чертеж в системе координат.

Задача 2.Даны координаты точек – вершин пирамиды ABCD:

1) вычислить длину ребра AB;

2) найти уравнение плоскости грани ABC;

3) найти угол между гранями ABC и BCD;

4) составить параметрические уравнения прямой AB;

5) составить канонические уравнения высоты пирамиды DK, проведенной из вершины D;

6) найти координаты точки пересечения DK и грани ABC;

7) найти угол между ребрами AB и BC;

8) найти угол между ребром AD и гранью ABC;

9) сделать чертеж пирамиды в системе координат.

Решение задачи 1.

1) Вычислим длину стороны ВС по формуле (1):

||= =

2) Составим уравнение стороны ВС, используя формулу (8):

y = –2x + 14 – уравнение ВС.

3) Внутренний угол треугольника при вершине В найдем как угол между прямыми ВА и ВС. Для этого сначала вычислим угловой коэффициент прямой ВА по формуле (7):

и возьмем из уравнения ВС угловой коэффициент прямой ВС: .

Из расположения точек A, B, C на координатной плоскости видно, что угол В в треугольнике ABC – острый, поэтому по формуле (11) вычислим

.

4) Для получения уравнения высоты АK, проведенной из вершины А, используем уравнение пучка прямых (6) и условие перпендикулярности прямых (10). Сначала вычислим угловой коэффициент прямой АK . Так как , то .

Уравнение AK получим по формуле (6):

ууА = kAK(xxA) у – (–1) = (x– (–3))

5) Для определения координат центра тяжести треугольника используем свойство точки пересечения его медиан: если – медиана треугольника и P – точка пересечения его медиан, то P делит в отношении 2 : 1, начиная от точки А, т.е. .

Основание медианы – точка М является серединой отрезка ВС. Найдем координаты точки М по формулам (3):

М(6; 2).

Теперь, когда координаты концов отрезка известны, найдем координаты точки P, которая делит в отношении = 2, начиная от точки А, по формулам деления отрезка в заданном отношении (2):

P(3; 1) – центр тяжести треугольника АВС.

6) Построим чертеж к задаче в системе координат ХОY (рис. 3). Полученные при решении задачи результаты не противоречат чертежу.

1) длина стороны || = ;

2) уравнение стороны ВС: y = –2x + 14;

3) угол при вершине В: ;

4) уравнение высоты АK: x –2y + 1 = 0;

5) координаты центра тяжести треугольника P(3; 1);

6) чертеж на рис. 3.

Решение задачи 2.

1) Длину ребра найдем по формуле:

2) Чтобы получить уравнение плоскости грани ABC, необходимо найти вектор, перпендикулярный плоскости ABC, т.е. вектор, перпендикулярный векторам и . Одним из таких векторов является векторное произведение на . Для того, чтобы найти его, сначала вычислим координаты векторов по формулам:

= <–3–(–2); 2–1; –1–1>= <–1; 1; –2>,

=<7; –3; –3>.

Найдем векторное произведение и :

В качестве вектора нормали к плоскости ABC можно взять любой вектор, коллинеарный полученному, например, = <9; 17; 4>. Используем уравнение плоскости, проходящей через точку перпендикулярно вектору (формула (12):

– уравнение плоскости грани ABC.

3) Прежде, чем найти угол между гранями ABC и BCD, получим уравнение грани BCD, используя уравнение плоскости, проходящей через три заданные точки (формула (13):

– уравнение грани BCD.

Из уравнения плоскости BCD возьмем координаты вектора нормали , перпендикулярного этой плоскости: =<3; 7; –4>.

Косинус угла между плоскостями (гранями) ABC и BCD найдем по формуле(14):

Отсюда .

4) Уравнения ребра AB можно записать как параметрические уравнения прямой, проходящей через точку A(–2;1;1) и имеющей направляющий вектор = <–1; 1; –2>(формулы (15)):

– параметрические уравнения AB.

Другой способ: можно использовать уравнения прямой, проходящей через две точки (формулы (17)):

откуда, обозначив каждую из дробей буквой t, получаем:

– параметрические уравнения AB.

5) Высота пирамиды DK – это прямая, проведенная из вершины D перпендикулярно грани ABC. Она имеет направляющий вектор , коллинеарный вектору нормали плоскости ABC. Можно взять, например, = = <9; 17; 4>. Запишем канонические уравнения высоты DK, используя точку D(–1; 0; –3) и вектор = <9; 17; 4>(формулы (16)):

– канонические уравнения DK.

6) Прежде, чем найти точку пересечения DK и грани ABC, получим параметрические уравнения прямой DK.Обозначив каждую из дробей в канонических уравнениях буквой t, получаем:

– параметрические уравнения DK.

Точка пересечения DK и грани ABC (точка К) лежит на прямой, а значит, имеет координаты , и принадлежит плоскости, т.е. ее координаты удовлетворяют уравнению плоскости ABC. Поэтому координаты точки K найдем, решив систему:

Решим последнее уравнение относительно t:

Вычислим координаты точки K, подставив найденное значениепараметра t в первые три уравнения системы:

Итак, точка пересечения DK и грани ABC: .

7) Угол между ребрами AB и BC найдем, как угол между направляющими векторами прямых AB и BC: = <–1; 1; –2>и =<8; –4; –1>. Вычислим косинус угла по формуле (18):

Тогда угол между ребрами AB и BC:

8) Чтобы определить угол между ребром AD и гранью ABC, найдем направляющий вектор прямой: =<1; –1; –4>. Плоскость ABC имеет вектор нормали = <9; 17; 4>. Синус угла между прямой и плоскостью ABC можно вычислить по формуле (19):

Тогда угол между ребром AD и гранью ABC:

9) Выполним чертеж пирамиды в системе координат (рис.4).

1)

2) АВС:

3) ;

4)

5) DK: ; 6) ;

7) ; 8) ;


источники:

http://ru.onlinemschool.com/math/assistance/cartesian_coordinate/plane/

http://lektsii.org/11-1720.html