Уравнение прямой дм перпендикулярной плоскости авс

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Уравнения прямой, которая проходит через заданную точку и перпендикулярна к заданной плоскости.

В этой статье мы разберемся с нахождением уравнений прямой, которая в прямоугольной системе координат в трехмерном пространстве проходит через заданную точку и перпендикулярна к заданной плоскости. Сначала разберем принцип составления уравнений такой прямой, после чего перейдем к решению задач.

Навигация по странице.

Принцип составления уравнений прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.

Прежде чем приступить к составлению уравнений прямой, которая проходит через заданную точку пространства перпендикулярно к заданной плоскости, освежим в памяти один момент.

В 10 классе на уроках геометрии доказывается теорема: через любую точку трехмерного пространства проходит единственная прямая, перпендикулярная к заданной плоскости. Таким образом, мы можем определить конкретную прямую, указав точку, через которую она проходит, и плоскость, к которой она перпендикулярна.

Сформулируем условие задачи.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , плоскость и требуется написать уравнения прямой a , проходящей через точку М1 перпендикулярно к заданной плоскости .

Решим эту задачу.

Нам известны координаты точки M1 , через которую проходит прямая a , уравнения которой нам требуется найти. Но этого мало, чтобы записать уравнения прямой a . Если мы будем знать еще координаты направляющего вектора прямой a , то сможем записать канонические уравнения прямой a в пространстве и параметрические уравнения прямой a в пространстве.

Как же определить координаты направляющего вектора прямой a ? Да очень просто. Так как по условию прямая a перпендикулярна к плоскости , то нормальный вектор плоскости является направляющим вектором прямой a . Таким образом, нам остается отыскать координаты нормального вектора плоскости , принять их за соответствующие координаты направляющего вектора прямой a и записать требуемые уравнения прямой a .

В свою очередь координаты нормального вектора плоскости находятся в зависимости от способа задания плоскости в прямоугольной системе координат Oxyz . Если плоскости в прямоугольной системе координат Oxyz отвечает общее уравнение плоскости вида , то нормальным вектором плоскости является вектор . Если плоскость задается уравнением плоскости в отрезках , то от него следует перейти к общему уравнению плоскости , откуда станут видны координаты нормального вектора плоскости : . Если плоскость задана каким-либо другим способом (например, с помощью трех точек, не лежащих на одной прямой, или с помощью уравнений двух пересекающихся прямых, или с помощью уравнений двух параллельных прямых), то на основании этих данных следует определить общее уравнение плоскости , откуда получить координаты ее нормального вектора.

Итак, задача нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости, решена. Осталось лишь рассмотреть несколько решенных примеров.

Примеры нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости.

В этом пункте статьи мы приведем подробные решения наиболее характерных задач, в которых находятся уравнения прямой, проходящей через заданную точку пространства перпендикулярно к заданной плоскости.

Начнем с самого простого случая, когда требуется написать уравнения прямой, проходящей через заданную точку перпендикулярно к одной из координатных плоскостей.

Напишите канонические уравнения прямой a , которая проходит через точку и перпендикулярна координатной плоскости Oyz .

Нормальным вектором координатной плоскости Oyz является координатный вектор . Так как прямая a перпендикулярна плоскости Oyz , то является ее направляющим вектором. Итак, мы знаем координаты точки, лежащей на прямой a , и координаты ее направляющего вектора, то есть, можем написать ее канонические уравнения: .

.

Аналогично решается задача, в условии которой даны координаты точки, через которую проходит прямая, и задана плоскость с помощью общего уравнения плоскости.

Составьте параметрические уравнения прямой a , проходящей через точку перпендикулярно к плоскости .

Направляющим вектором прямой a является нормальный вектор плоскости , то есть, . Теперь мы можем записать требуемые уравнения прямой a . Они имеют вид .

.

В заключении рассмотрим пример составления уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к плоскости, заданной тремя не лежащими на одной прямой точками.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы три точки . Напишите уравнения прямой a , проходящей через начало координат перпендикулярно к плоскости ABC .

Направляющим вектором прямой, проходящей через начало координат перпендикулярно к плоскости АВС , является нормальный вектор плоскости АВС . Нормальным вектором плоскости АВС является векторное произведение векторов и . Найти указанное векторное произведение мы сможем, если будем знать координаты векторов и . Вычислим координаты векторов и по координатам точек А , В и С (при необходимости смотрите статью нахождение координат вектора по координатам точек его конца и начала): .

Тогда, , а в координатной форме (при необходимости обращайтесь к статье координаты вектора).

Теперь мы можем записать требуемые уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости ABC : .

Приведем второй способ решения этой задачи.

Составим уравнение плоскости, проходящей через три заданные точки А , В и С , , откуда виден нормальный вектор этой плоскости . Далее принимаем этот вектор за направляющий вектор прямой a и записываем ее уравнения.

.

Урок геометрии по теме «Перпендикулярность прямой и плоскости». 10-й класс

Разделы: Математика

Класс: 10

Цели:

  1. закрепить вопросы теории по теме «Перпендикулярность прямой и плоскости»;
  2. вырабатывать навыки применения теоретических знаний к решению типовых задач на перпендикулярность прямой и плоскости.

План:

  1. Теоретический опрос.
    1. Доказательство изученных теорем у доски.
    2. Фронтальный опрос.
    3. Презентации учащихся по данной теме.
  2. Решение задач.
    1. Решение устных задач по готовым чертежам.
    2. Решение письменных задач (по группам).
    3. Самостоятельная работа с индивидуальным заданием.
  3. Итог урока. Задание на дом.

Ход урока

I. Теоретический опрос (4 ученика у доски)

1) доказать лемму о 2-ух параллельных прямых, одна из которых перпендикулярна к третьей;
2) доказать теорему о 2-ух параллельных прямых, одна из которых перпендикулярна к плоскости;
3) доказать обратную теорему о параллельности 2-ух прямых, перпендикулярных к плоскости;
4) доказать признак перпендикулярности прямой и плоскости.

Пока ученики готовятся у доски к ответу, с классом проводится фронтальный опрос.
(С помощью мультимедиапроектора на экране появляются вопросы (Приложение 1), и ученики отвечают на них)

1. Закончить предложение:

а) две прямые в пространстве называются перпендикулярными, если… (угол между ними равен 90°)
б) прямая называется перпендикулярной к плоскости, если… (она перпендикулярна к любой прямой, лежащей в этой плоскости)
в) если две прямые перпендикулярны к плоскости, то они… (параллельны)
г) если плоскость перпендикулярна к одной из двух параллельных прямых, то она… (перпендикулярна и к другой прямой)
д) если две плоскости перпендикулярны к одной прямой, то они… (параллельны)

2. Дан параллелепипед

б) Определите взаимное расположение:
1) прямой CC1 и плоскости (DСВ) (ответ: они перпендикулярны)
2) прямой D1C1 и плоскости (DCB) (ответ: они параллельны)

Далее выслушиваются ответы учеников у доски с дополнениями и исправлениями по необходимости. Затем рассматриваются презентации по данной теме, подготовленные рядом учеников в качестве зачётных работ (Приложение 2, Приложение 3, Приложение 4).
(Накануне изучения каждой темы учащимся предлагается такой вариант зачёта)

II. Решение задач.

1. Решение задач по готовым чертежам (Устно)

№1

Дано: ∆ ABC — прямоугольный; AMAC; M ∉ (ABC)
Доказать: AC ⊥ (AMB)
Доказательство: Т.к. ACAB и ACAM, а AMAB, т.е. АМ и АВ лежат в плоскости (АМВ), то AC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости.
Ч.т.д.

№2

Дано: ВМDC — прямоугольник, M ∉ (ABC), MBAB
Доказать: CD ⊥ (ABC)
Доказательство: MBBC, т.к. ВМDC – прямоугольник, MBAB по условию, BCAB, т.е. ВС и АВ лежат в плоскости (АВС) ⇒ MB(ABC) по признаку перпендикулярности прямой и плоскости. СDМВ по свойству сторон прямоугольника ⇒ CD(ABC) по теореме о двух параллельных прямых, одна из которых перпендикулярна к плоскости (то и другая прямая перпендикулярна к этой плоскости).
Ч.т.д.

№3

Дано: АВСD – прямоугольник, M ∉ (ABC), MBBC
Доказать: ADAM
Доказательство:
1) ∠ABC = 90°, т.к. АВСD – прямоугольник ⇒ BCAB, BSMB по условию, MBAB = B, т.е. МВ и АВ лежат в плоскости (АМВ) ⇒ BC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости.
2) BCAD (по свойству сторон прямоугольника) ⇒ AD ⊥ (AMB) по теореме о двух параллельных прямых, одна из которых перпендикулярна плоскости (то и другая прямая перпендикулярна к этой плоскости).
3) Т.к. AD ⊥ (AMB) ⇒ ADAM по определению прямой, перпендикулярной плоскости.
Ч.т.д.

№4

Дано: АВСD – параллелограмм, M ∉ (ABC), МВ = МD, МА = МС
Доказать: MO ⊥ (ABC)
Доказательство:
1) Т.к. О – точка пересечения диагоналей параллелограмма, то АО = СО и ВО = DO. ∆ BMD — равнобедренный, т. к. ВМ = МD по условию, значит МО — медиана и высота, т.е. MOBD.
2) Аналогично доказывается в ∆ AMC: MOAC.
3) Итак, MOBD и MOAC. а ВD и АС – пересекающиеся прямые, лежащие в плоскости (АВС) ⇒ MO ⊥ (ABC) по признаку перпендикулярности прямой и плоскости.
Ч.т.д.

(Устные ответы к каждой задаче требуется обосновывать, проговаривая всякий раз формулировки применяемых теорем)

2. Решение письменных задач

Класс делится на три группы (например, по рядам), и каждой группе даётся задача с последующей проверкой решения у доски.

№1.2 (№125 учебника)

Через точки P и Q прямой РQ проведены прямые, перпендикулярные к плоскости α и пересекающие её соответственно в точках P1 и Q1. Найдите P1Q1, если PQ = 15 cм; PP1 = 21,5 cм; QQ1 = 33,5 cм.
Решение:

1) PP1 ⊥ α и QQ1 ⊥ α по условию ⇒ PP1QQ1 (обосновать);
2) PP1 и QQ1 определяют некоторую плоскость β, α ⋂ β = P1Q1;
3) PP1Q1Q — трапеция с основаниями PP1 и QQ1, проведём PKP1Q1;
4) QK = 33,5 — 21,5 = 12 (см)

P1Q1 = PK == 9 см.

№2.2

1) ∆ ABD: ∠BAD = 90°; АD = BC = 8 см;

ВD =см;

2) ∆ DD1B: ∠D1DB = 90°;

DD1 == 12 см;
3) SBB1D1D = BDDD1 =см 2 .

Ответ:см 2 .

№3.2

Отрезок МН пересекает плоскость α в точке К. Из концов отрезка проведены прямые МЕ и НР, перпендикулярные к плоскости α. НР = 4 см; МЕ = 12 см; НК = 5 см. Найдите отрезок РЕ.
Решение:

1) Т.к. прямые МЕ и НР перпендикулярны к плоскости α, то МЕНР (обосновать) и через них проходит некоторая плоскость β. α ⋂ β = EP;
2)МЕ ⊥ EP; НР ⊥ EP(обосновать), т.е. ∠MEK = ∠HPK = 90°;

3) ∆ HPK: KP == 3 см;

4) ∠EMK = ∠PHK (накрест лежащие для параллельных прямых МЕ и НР и секущей МН),

тогда ∆ MEKHPK по двум углам и; т.е.EK == 9 см,

РЕ = РК + КЕ, РЕ = 3 + 9 = 12 см.

Ответ: РЕ = 12 см.

3. Самостоятельная работа (направлена на проверку усвоения материала по данной теме)

1) AA1AB, AA1AD, а ABAD = AAA1 ⋂ (ABC) (по признаку перпендикулярности прямой и плоскости), а т.к. AA1BB1, то BB1 ⊥ (ABC) ⇒ BB1BD;
2) ∆ ABD: ∠BAD = 90°. По теореме Пифагора:

Вариант IВариант II
Через вершины А и В прямоугольника АВСD проведены параллельные прямые AA1 и BB1, не лежащие в плоскости прямоугольника. Известно, что AA1AB, AA1AD. Найдите B1B, если B1D = 25 см, AB = 12 см, AD = 16 см.Через вершины А и В ромба АВСD проведены параллельные прямые AA1 и BB1, не лежащие в плоскости ромба. Известно, что BB1BC, BB1AB. Найдите A1A, если A1C = 13 см, BD = 16 см, AB = 10 см.
BD == 20 см;

3) ∆ B1BD – прямоугольный. По теореме Пифагора:

B1B == 15 см.

1) BB1AB, BB1BC, а ABBC = BBB1 ⋂ (ABC) (по признаку перпендикулярности прямой и плоскости), а т.к. BB1AA1, то AA1 ⊥ (ABC) ⇒ AA1AC;
2) Используя свойство диагоналей ромба, имеем в ∆ AOB: ∠AOB = 90°, BO = ½ BD = 8 см. По теореме Пифагора:

AO == 6 см,

AO = ½ ACAC = 12 см;
3) ∆ A1AC – прямоугольный. По теореме Пифагора:

AA1 == 5 см.

Индивидуальное задание для более сильных учеников. (Вариант III)

1) Т.к. CD ⊥ (FDC) ⇒ CDAC и CDBC, т.е. ∆ ADC, ∆ BDC – прямоугольные;
2) ∆ ADC = ∆ BDC (по двум катетам) ⇒ AD = BD, т.е. ∆ ADB – равнобедренный и DM – медиана, а значит и высота; 3) DCMC ⇒ MCD – прямоугольный,

тогда MC == 9;

4) ∆ ABC – равносторонний, поэтому СМ – медиана и высота, т.е. ∆ MCB – прямоугольный, ∠B = 60°,

sin ∠B =, тогда,

а АВ = ВС (по условию).
5) SADB = ½ DMAB;

SADB = ½ ∙ 15 ∙.

Ответ:

III. Подводятся итоги урока. Задание на дом: повторить теоретический материал по изученной теме, глава II, №130, №131.

Для подготовки к уроку использовались материалы учебника «Геометрия – 10-11» авторов Л.С. Атанасяна, В.Ф. Бутузова и др., методические рекомендации к учебнику «Изучение геометрии в 10-11 классах» авторов С.М. Саакяна, В.Ф. Бутузова, «Поурочные разработки по геометрии» автора В.А. Яровенко.


источники:

http://www.cleverstudents.ru/line_and_plane/line_passes_through_point_perpendicular_to_plane.html

http://urok.1sept.ru/articles/524196