Уравнение прямой и ее свойства

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

Уравнение прямой, виды уравнения прямой на плоскости

В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.

Определение уравнения прямой на плоскости

Допустим, что есть прямая линия, которая задана в прямоугольной декартовой системе координат O х у .

Прямая линия – это геометрическая фигура, которая состоит из точек. Каждая точка имеет свои координаты по осям абсцисс и ординат. Уравнение, которое описывает зависимость координат каждой точки прямой в декартовой системе O x y , называется уравнением прямой на плоскости.

Фактически, уравнение прямой на плоскости – это уравнение с двумя переменными, которые обозначаются как x и y . Уравнение обращается в тождество при подстановке в него значений любой из точек прямой линии.

Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.

Общее уравнение прямой линии

Познакомимся с теоремой, которая задает вид уравнения прямой линии на плоскости в декартовой системе координат O x y .

Уравнение вида A x + B y + C = 0 , где x и y – переменные, а А , В и C – это некоторые действительные числа, из которых A и B не равны нулю, задает прямую линию в декартовой системе координат O x y . В свою очередь, любая прямая линия на плоскости может быть задана уравнением вида A x + B y + C = 0 .

Таким образом, общее уравнение прямой на плоскости имеет вид A x + B y + C = 0 .

Поясним некоторые важные аспекты темы.

Посмотрите на рисунок.

Линия на чертеже определяется уравнением вида 2 x + 3 y — 2 = 0 , так как координаты любой точки, составляющей эту прямую, удовлетворяют приведенному уравнению. В то же время, определенное количество точек плоскости, определяемых уравнением 2 x + 3 y — 2 = 0 , дают нам прямую линию, которую мы видим на рисунке.

Общее уравнение прямой может быть полным и неполным. В полном уравнении все числа А , В и C отличны от нуля. Во всех остальных случаях уравнение считается неполным. Уравнение вида A x + B y = 0 определяет прямую линию, которая проходит через начало координат. Если A равно нулю, то уравнение A x + B y + C = 0 задает прямую, расположенную параллельно оси абсцисс O x . Если B равно нулю, то линия параллельна оси ординат O y .

Вывод: при некотором наборе значений чисел А , В и C с помощью общего уравнения прямой можно записать любую прямую линию на плоскости в прямоугольной системе координат O х у .

Прямая, заданная уравнением вида A x + B y + C = 0 , имеет нормальный вектор прямой с координатами A , B .

Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.

Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.

Уравнение прямой в отрезках

Уравнение прямой в отрезках имеет вид x a + y b = 1 , где a и b – это некоторые действительные числа, которые не равны нулю. Абсолютные величины чисел a и b равны длине отрезков, которые отсекаются прямой линией на осях координат. Длина отрезков отсчитывается от начала координат.

Благодаря уравнению можно легко построить прямую линию на чертеже. Для этого необходимо отметить в прямоугольной системе координат точки a , 0 и 0 , b , а затем соединить их прямой линией.

Построим прямую, которая задана формулой x 3 + y — 5 2 = 1 . Отмечаем на графике две точки 3 , 0 , 0 , — 5 2 , соединяем их между собой.

Дополнительно рекомендуем ознакомиться с материалом, изложенным в статье «Уравнение прямой в отрезках».

Уравнение прямой с угловым коэффициентом

Эти уравнения, имеющие вид y = k · x + b должны быть нам хорошо известны из курса алгебры. Здесь x и y – это переменные, k и b – это некоторые действительные числа, из которых k представляет собой угловой коэффициент. В этих уравнениях переменная у является функцией аргумента x .

Дадим определение углового коэффициента через определение угла наклона прямой к положительному направлению оси O x .

Для обозначения угла наклона прямой к положительному направлению оси O x в декартовой системе координат введем величину угла α . Угол отсчитывается от положительного направления оси абсцисс до прямой линии против хода часовой стрелки. Угол α считается равным нулю в том случае, если линия параллельна оси O x или совпадает с ней.

Угловой коэффициент прямой – это тангенс угла наклона этой прямой. Записывается это следующим образом k = t g α . Для прямой, которая располагается параллельно оси O y или совпадает с ней, записать уравнение прямой с угловым коэффициентом не представляется возможным, так как угловой коэффициент в этом случае превращается в бесконечность (не существует).

Прямая, которая задана уравнением y = k · x + b , проходит через точку 0 , b на оси ординат. Это значит, что уравнение прямой с угловым коэффициентом y = k · x + b , задает на плоскости прямую линию, которая проходит через точку 0 , b и образует угол α с положительным направлением оси O x , причем k = t g α .

Изобразим прямую линию, которая определяется уравнением вида y = 3 · x — 1 .

Эта линия должна пройти через точку ( 0 , — 1 ) . Угол наклона α = a r c t g 3 = π 3 равен 60 градусов к положительному направлению оси O x . Угловой коэффициент равен 3

Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.

Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.

Каноническое уравнение прямой на плоскости

Данный вид уравнения имеет вид x — x 1 a x = y — y 1 a y , где x 1 , y 1 , a x , a y — это некоторые действительные числа, из которых a x и a y не равны нулю.

Прямая линия, заданная каноническим уравнением прямой, проходит через точку M 1 ( x 1 , y 1 ) . Числа a x и a y в знаменателях дробей представляют собой координаты направляющего вектора прямой линии. Это значит, что каноническое уравнение прямой линии x — x 1 a x = y — y 1 a y в декартовой системе координат O x y соответствует линии, проходящей через точку M 1 ( x 1 , y 1 ) и имеющей направляющий вектор a → = ( a x , a y ) .

Изобразим в системе координат O x y прямую линию, которая задается уравнением x — 2 3 = y — 3 1 . Точка M 1 ( 2 , 3 ) принадлежит прямой, вектор a → ( 3 , 1 ) является направляющим вектором этой прямой линии.

Каноническое уравнение прямой линии вида x — x 1 a x = y — y 1 a y может быть использовано в случаях, когда a x или a y равно нулю. Наличие ноля в знаменателе делает запись x — x 1 a x = y — y 1 a y условной. Уравнение можно записать следующим образом a y ( x — x 1 ) = a x ( y — y 1 ) .

В том случае, когда a x = 0 , каноническое уравнение прямой принимает вид x — x 1 0 = y — y 1 a y и задает прямую линию, которая расположена параллельно оси ординат или совпадает с этой осью.

Каноническое уравнение прямой при условии, что a y = 0 , принимает вид x — x 1 a x = y — y 1 0 . Такое уравнение задает прямую линию, расположенную параллельно оси абсцисс или совпадающую с ней.

Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.

Параметрические уравнения прямой на плоскости

Данные уравнения имеют вид x = x 1 + a x · λ y = y 1 + a y · λ , где x 1 , y 1 , a x , a y — это некоторые действительные числа, из которых a x и a y не могут быть одновременно равны нулю. В формулу вводится дополнительный параметр λ , который может принимать любые действительные значения.

Назначение параметрического уравнения в том, чтобы установить неявную зависимости между координатами точек прямой линии. Для этого и вводится параметр λ .

Числа x , y представляют собой координаты некоторой точки прямой. Они вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра λ .

Предположим, что λ = 0 .

Тогда x = x 1 + a x · 0 y = y 1 + a y · 0 ⇔ x = x 1 y = y 1 , т. е. точка с координатами ( x 1 , y 1 ) принадлежит прямой.

Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.

Рассмотрим параметрические уравнения прямой линии вида x = 2 + 3 · λ y = 3 + λ . Прямая, заданная уравнениями, в декартовой системе координат проходит через точку ( x 1 , y 1 ) и имеет направляющий вектор a → = ( 3 , 1 ) .

Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».

Нормальное уравнение прямой

Нормальное уравнение прямой имеет вид , A x + B y + C = 0 , где числа А , В , и C таковы, что длина вектора n → = ( A , B ) равна единице, а C ≤ 0 .

Нормальным вектором линии, заданной нормальным уравнением прямой в прямоугольной системе координат O х у , является вектор n → = ( A , B ) . Эта прямая проходит на расстоянии C от начала координат в направлении вектора n → = ( A , B ) .

Еще одним вариантом записи нормального уравнения прямой линии является cos α · x + cos β · y — p = 0 , где cos α и cos β — это два действительных числа, которые представляют собой направляющие косинусы нормального вектора прямой единичной длины. Это значит, что n → = ( cos α , cos β ) , справедливо равенство n → = cos 2 α + cos 2 β = 1 , величина p ≥ 0 и равна расстоянию от начала координат до прямой.

Рассмотрим общее уравнение прямой — 1 2 · x + 3 2 · y — 3 = 0 . Это общее уравнение прямой является нормальным уравнением прямой, так как n → = A 2 + B 2 = — 1 2 2 + 3 2 = 1 и C = — 3 ≤ 0 .

Уравнение задает в декартовой системе координат 0ху прямую линию, нормальный вектор которой имеет координаты — 1 2 , 3 2 . Линия удалена от начала координат на 3 единицы в направлении нормального вектора n → = — 1 2 , 3 2 .

Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой A x + B y + C = 0 числа А , В и С таковы, что уравнение A x + B y + C = 0 не является нормальным уравнением прямой, то его можно привести к нормальному виду. Подробнее об этом читайте в статье «Нормальное уравнение прямой».

Прямая — понятие, виды и её свойства с примерами

Содержание:

Прямая:

Прямая бесконечна (в обе стороны) и разбивает плоскость на две полуплоскости (рис. 24), для которых прямая является границей. Граница принадлежит полуплоскостям. На рисунке 25 точка С лежит на прямой между точками А и В, которые лежат по разные стороны от точки С. Точки С и В лежат по одну сторону от точки А. Из трех точек на прямой одна и только одна точка лежит между двумя другими.

Если на плоскости отметить две точки А и В, то через них всегда можно провести прямую АВ (рис. 26, а). Через одну точку можно провести бесконечно много прямых (рис. 26, б), через три точки не всегда можно провести прямую (рис. 26, в). Через две точки можно провести бесконечно много окружностей (рис. 26, г), а прямую — только одну!

Аксиома прямой. Через любые две точки плоскости можно провести прямую, и притом только одну.

Из аксиомы следует, что если две прямые () имеют общую точку (М), то это единственная общая точка (рис. 27). Если предположить, что существует еще одна общая точка (К), то тогда через две точки (М и К) пройдут две прямые, что по аксиоме прямой невозможно.

Определение. Две прямые называются пересекающимися, если они имеют общую точку.

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Если прямые параллельны, то отрезки, изображающие эти прямые, никогда не пересекутся, сколько бы их ни продолжали (рис. 28).

Луч:

Определение. Лучом называется часть прямой, ограниченная одной точкой.

Точка, ограничивающая луч, принадлежит лучу и называется началом луча. Луч бесконечен (в одну сторону). Он обозначается одной малой буквой, или двумя большими буквами, где первой всегда записывается начало луча.

При этом вторая точка может быть не отмечена на луче. Она указывает направление луча, например как точка В на луче АВ (рис. 29).

Определение. Два луча называются дополнительными (противоположными), если они имеют общее начало и лежат на одной прямой.

На рисунке 30 изображены дополнительные дополнительные лучи ОМ и ОК. Они дополняют друг друга до прямой. Чтобы построить луч, дополнительный данному, достаточно продлить данный луч за его начало вдоль прямой, на которой лежит данный луч. Любая точка прямой разбивает ее на два дополнительных луча.

Отрезок:

Определение. Отрезком называется часть прямой, ограниченная двумя точками.

Точки, ограничивающие отрезок, принадлежат отрезку и называются концами отрезка, остальные точки отрезка — его внутренними точками. На рисунке 31 изображен отрезок АВ с концами А и В. Точка М — внутренняя точка отрезка АВ.

Если концы отрезка лежат в разных полуплоскостях относительно прямой, то этот отрезок пересекает прямую, если в одной полуплоскости — то не пересекает. На рисунке 32 концы отрезка АВ лежат в разных полуплоскостях относительно прямой а, и он пересекает прямую . Концы же отрезка CD лежат в одной полуплоскости, и он не пересекает прямую .

Если при наложении отрезков их концы совпадут, то по аксиоме прямой эти отрезки совпадут всеми своими точками.

Определение. Два отрезка называются равными, если их можно совместить наложением.

Важной характеристикой отрезка является его длина.

Свойства длины отрезка: каждый отрезок имеет длину, выраженную положительным числом; равным отрезкам соответствуют равные длины, большему отрезку — большая длина. И наоборот.

Аксиома измерения отрезков. Если на отрезке взять точку, то она разобьет данный отрезок на два отрезка, сумма длин которых равна длине данного отрезка.

Аксиома откладывания отрезков. На любом луче от его вершины можно отложить отрезок данной длины, и притом только один.

На рисунке 33 точка С лежит на отрезке АВ. По аксиоме измерения отрезков следует, что АС + СВ=АВ.

Серединой отрезка называется точка, которая делит отрезок на два равных отрезка. На рисунке 34 точка М — середина отрезка EF, то есть ЕМ = MF.

Определение. Расстоянием между двумя точками называется длина отрезка, соединяющего эти точки.

На рисунке 35 расстояние между точками К и N равно длине отрезка KN.

Ломаная:

На рисунке 36 отрезки АВ, ВС, CD, DE и EF последовательно соединены своими концами: отрезок ВС соединен с отрезком АВ, отрезок CD соединен с отрезком ВС и так далее. Полученная фигура представляет собой ломаную ABCDEF. Указанные отрезки называются звеньями ломаной, а точки А, В, С, D, Е и F — вершинами ломаной.

Определение. Ломаной называется геометрическая фигура, образованная отрезками, последовательно соединенными своими концами, у которой никакие два соседних звена не лежат на одной прямой. Длиной ломаной называется сумма длин ее звеньев.

Определение. Ломаная называется замкнутой, если начало ее первого звена совпадает с концом последнего. В противном случае она называется незамкнутой. Ломаная называется простой, если она не имеет самопересечений и никакие два ее звена, кроме соседних, не имеют общих точек. В противном случае она называется непростой (рис. 37).

Простая замкнутая ломаная на плоскости называется многоугольником. Звенья этой ломаной называются сторонами этого многоугольника, а вершины — вершинами многоугольника. Периметром многоугольника называется сумма длин его сторон. Часть плоскости, ограниченная многоугольником, называется плоским многоугольником. Слово «плоский» употреблять не будем. Отрезок, соединяющий вершины многоугольника, не принадлежащие одной стороне, называется его диагональю. Если у многоугольника три стороны, то у него три вершины и три угла, и он называется треугольником, если четыре стороны — четырехугольником, если пять — пятиугольником и так далее.

На рисунке 38 изображен четырехугольник ABCD со сторонами АВ, ВС, CD и AD. У него четыре угла: и две диагонали: АС и BD. Периметр этого четырехугольника:

При записи многоугольника его вершины записываются последовательно, начиная с любой вершины и в любом направлении. Например, СBAD — это тот же четырехугольник ABCD.

Самые известные четырехугольники — это прямоугольник и квадрат. У прямоугольника все углы прямые, а противоположные стороны равны. Квадрат — это прямоугольник, у которого все стороны равны. На рисунке 39 ABCD — прямоугольник, MNPK — квадрат. Позже мы дадим определение прямоугольника и квадрата и рассмотрим их свойства подробно. А пока будем пользоваться указанными представлениями.

Пример:

На отрезке АВ, равном 24 см, взята точка С. Отрезок АС на 6 см больше отрезка СВ. Найти длину отрезка АС.

Решение:

Пусть СВ = см, тогда АС = см.

По аксиоме измерения отрезков (рис. 40).

То есть,

Ответ: 15 см.

Замечание. В дальнейшем при решении задач не будем ссылаться на аксиому измерения отрезков.

Пример:

На отрезке АВ отмечены точки С и D (рис. 41). Найти длину отрезка CD, если:

Решение:

Если сложить отрезки AD и ВС, то получим отрезок АВ плюс отрезок CD. Отсюда

Ответ: а) 6 см; б)

Пример:

На отрезке АВ, равном 42 см, взята точка М. Найти расстояние между серединами отрезков AM и MB.

Решение:

Пусть С — середина отрезка AM, D — середина отрезка MB.

Обозначим (рис. 42).

Тогда

Следовательно, (см).

Замечание. В данной задаче мы доказали свойство: «Если на отрезке отмечена точка, то расстояние между серединами полученных отрезков равно половине данного отрезка». Утверждения, которые будут доказаны нами в ключевых задачах, могут в дальнейшем использоваться как известные свойства.

Прямая в высшей математике

Прямая L в пространстве может быть однозначно определена, если известна точка, принадлежащая прямой, и ненулевой вектор, параллельный прямой (направляющий вектор прямой). Пусть задана такая точка и вектор (Рис. 5.1).

Если М(х, у, z) — произвольная текущая точка прямой L, то вектор коллииеарен вектору и их соответствующие координаты пропорциональны.

Этим соотношениям удовлетворяют координаты любой точки прямой L и только этой прямой. Равенства (5.1) называются каноническими уравнениями прямой в пространстве.

Обозначим радиус-вектор точки — радиус-вектор точки М. Тогда:

(5.2)

В силу коллинеарности векторов и существует число такое, что Тогда из (5.2) получим векторное параметрическое уравнение прямой:

(5-3)

В координатной форме уравнение (5.3) равносильно трем уравнениям:

(5.4)

которые называются параметрическими уравнениями прямой в пространстве.

Исключая из уравнений (5.4) параметр t, легко перейти к каноническим уравнениям прямой (5.1).

Обратный переход от (5.1) к (5.4) осуществляют, приравнивая каждое из трех соотношений (5.1) к t. При этом, если знаменатель какого-либо соотношения равен нулю, то необходимо приравнять к нулю его числитель.

Пусть заданы точки . Составим уравнение прямой, проходящей через заданные точки, пользуясь рис. 5.1.

Очевидно, что в этом случае направляющим вектором прямой L будет вектор . Используя (5.1), получаем искомые уравнения в виде:

Прямую L в пространстве можно определить как пересечение двух плоскостей. Рассматривая совместно уравнения этих плоскостей, получим уравнение линии L в общем виде:

(5.6)

Система двух уравнений первой степени (5.6) определяет прямую линию при условии, что нормальные векторы и неколлинеарны. Только в этом случае плоскости будут пересекаться. Уравнения (5.6) носят название «общее уравнение прямой в пространстве».

Чтобы перейти от общих уравнений прямой (5.6) к ее каноническим уравнениям (5.1), нужно на прямой найти какую-нибудь точку и определить ее направляющий вектор .

Точку находят, давая произвольное значение одной из переменных х, у или z. Решая систему (5.6), получают значения оставшихся двух переменных.

Направляющий вектор параллелен линии пересечения плоскостей (5.6) и, следовательно, перпендикулярен обоим нормальным векторам плоскостей:

Поэтому в качестве можно взять вектор:

Понятие прямой

Нормальным вектором прямой называется любой вектор, перпендикулярный прямой.

Направляющим вектором прямой называется любой вектор, лежащий на этой прямой.

Взаимное расположение прямых

Пусть даны две прямые:

Эти прямые заданы своими точками и направляющими векторами и Поэтому:

Параллельность или перпендикулярность прямых равносильна, соответственно, параллельности или перпендикулярности их направляющих векторов. Поэтому условие перпендикулярности прямых можно записать в виде:

Условие параллельности:

Возможны четыре случая взаимного расположения прямых:

  • I. Прямые совпадают, т.е.
  • II. Прямые параллельны: непараллелен ,
  • III. Прямые пересекаются: непараллелен, — компланарны, т.е.
  • IV. Прямые скрещиваются: — некомпланарны, т.е. .

Условие (5.8) выполняется в случаях I-III и означает, что прямые лежат в одной плоскости.

Уравнения прямой на плоскости

1. Па плоскости Оху составим уравнение прямой l, проходящей через точку с нормальным вектором n=(А,В) (рис.6).

Возьмем любую точку М(х,у), лежащую на прямой l, и рассмотрим вектор Векторы и n будут взаимно перпендикулярными по определению нормального вектора: Следовательно, их скалярное произведение будет равно нулю:

В координатной форме это равенство примет вид:

Уравнение Ах+Ву+С=0, где А и В не равны одновременно нулю называется общим уравнением прямой.

Если то это уравнение можно представить в виде уравнения с угловым коэффициентом:

притом — угол наклона прямой к оси Ох.

Вывод. Прямая на плоскости однозначно определяется точкой и нормальным вектором.

2. Па плоскости Оху составим уравнение прямой l, проходящей через точку с направляющим вектором (рис.7).

Пусть М(х,у) — произвольная точка прямой l, — ее радиус-вектор, а — радиус-вектор точки Тогда по правилу треугольника имеем:

Так как векторы коллинеарны, то — некоторое число, называемое параметром. Подставляя это выражение в уравнение, получаем векторное уравнение прямой:

или в координатной форме параметрические уравнения прямой:

Пусть m и n отличны от нуля. Разрешим каждое из уравнений относительно t:

откуда получаем каноническое уравнение прямой:

Пусть прямая l проходит через две точки Тогда в качестве направляющего вектора прямой можно взять вектор Составим уравнение прямой, проходящей через две точки:

Вывод. Прямая однозначно определяется точкой и направляющим вектором.

Пример:

Вершины треугольника находятся в точках А(2,2), В(1,-2), С(-1,0). Найти проекцию точки А на основание ВС.

Решение:

Проекция точки А на ВС есть точка пересечения основания ВС с перпендикуляром, опущенным из А на ВС.

Составим уравнение прямой ВС по двум точкам:

— каноническое уравнение прямой ВС — общее уравнение прямой ВС.

Обозначим искомую проекцию точкой Н(х,у). Т.к. то скалярное произведение векторов

равно нулю:

— общее уравнение прямой АН.

Теперь найдем проекцию точки А на основание ВС. Для этого решим систему: Следовательно, Задача решена.

Замечание. Уравнение прямой АН можно было находить другими способами. Например, из общего уравнения прямой ВС х+у+1=0 можно выписать координаты нормального вектора (коэффициенты при х и у соответственно). Т.к. то нормальный вектор прямой ВС будет являться направляющим вектором прямой АН:

По нормальному вектору и точке А(2,2) составляем каноническое уравнение прямой АН:

Уравнения прямой в пространстве

Уравнения прямой l, проходящей через точку с направляющим вектором в пространстве Oxyz составляются аналогичным плоскости образом.

Пусть M(x,y,z) — произвольная точка прямой — ее радиус-вектор, a — радиус-вектор точки (рис.8).

Тогда векторное уравнение прямой останется прежним: где t — параметр.

Параметрические уравнения прямой примут вид:

В случае выразим канонические уравнения прямой:

Наконец, составим уравнения прямой, проходящей через две точки

Внимание! В пространстве точка и нормальный вектор однозначным образом определяют плоскость. Поэтому в пространстве общие уравнения прямой будут задаваться линией пересечения двух плоскостей.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Плоскость — определение, виды и правила
  • Кривые второго порядка
  • Евклидово пространство
  • Матрица — виды, операции и действия с примерами
  • Корень из числа — нахождение и вычисление
  • Теория множеств — виды, операции и примеры
  • Числовые множества
  • Вектор — определение и основные понятия

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-prjamoj-vidy-uravnenija-prjamoj-na-plosk/

http://www.evkova.org/pryamaya