Уравнение прямой перпендикулярной плоскости пространстве

Уравнения прямой, которая проходит через заданную точку и перпендикулярна к заданной плоскости.

В этой статье мы разберемся с нахождением уравнений прямой, которая в прямоугольной системе координат в трехмерном пространстве проходит через заданную точку и перпендикулярна к заданной плоскости. Сначала разберем принцип составления уравнений такой прямой, после чего перейдем к решению задач.

Навигация по странице.

Принцип составления уравнений прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.

Прежде чем приступить к составлению уравнений прямой, которая проходит через заданную точку пространства перпендикулярно к заданной плоскости, освежим в памяти один момент.

В 10 классе на уроках геометрии доказывается теорема: через любую точку трехмерного пространства проходит единственная прямая, перпендикулярная к заданной плоскости. Таким образом, мы можем определить конкретную прямую, указав точку, через которую она проходит, и плоскость, к которой она перпендикулярна.

Сформулируем условие задачи.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , плоскость и требуется написать уравнения прямой a , проходящей через точку М1 перпендикулярно к заданной плоскости .

Решим эту задачу.

Нам известны координаты точки M1 , через которую проходит прямая a , уравнения которой нам требуется найти. Но этого мало, чтобы записать уравнения прямой a . Если мы будем знать еще координаты направляющего вектора прямой a , то сможем записать канонические уравнения прямой a в пространстве и параметрические уравнения прямой a в пространстве.

Как же определить координаты направляющего вектора прямой a ? Да очень просто. Так как по условию прямая a перпендикулярна к плоскости , то нормальный вектор плоскости является направляющим вектором прямой a . Таким образом, нам остается отыскать координаты нормального вектора плоскости , принять их за соответствующие координаты направляющего вектора прямой a и записать требуемые уравнения прямой a .

В свою очередь координаты нормального вектора плоскости находятся в зависимости от способа задания плоскости в прямоугольной системе координат Oxyz . Если плоскости в прямоугольной системе координат Oxyz отвечает общее уравнение плоскости вида , то нормальным вектором плоскости является вектор . Если плоскость задается уравнением плоскости в отрезках , то от него следует перейти к общему уравнению плоскости , откуда станут видны координаты нормального вектора плоскости : . Если плоскость задана каким-либо другим способом (например, с помощью трех точек, не лежащих на одной прямой, или с помощью уравнений двух пересекающихся прямых, или с помощью уравнений двух параллельных прямых), то на основании этих данных следует определить общее уравнение плоскости , откуда получить координаты ее нормального вектора.

Итак, задача нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости, решена. Осталось лишь рассмотреть несколько решенных примеров.

Примеры нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости.

В этом пункте статьи мы приведем подробные решения наиболее характерных задач, в которых находятся уравнения прямой, проходящей через заданную точку пространства перпендикулярно к заданной плоскости.

Начнем с самого простого случая, когда требуется написать уравнения прямой, проходящей через заданную точку перпендикулярно к одной из координатных плоскостей.

Напишите канонические уравнения прямой a , которая проходит через точку и перпендикулярна координатной плоскости Oyz .

Нормальным вектором координатной плоскости Oyz является координатный вектор . Так как прямая a перпендикулярна плоскости Oyz , то является ее направляющим вектором. Итак, мы знаем координаты точки, лежащей на прямой a , и координаты ее направляющего вектора, то есть, можем написать ее канонические уравнения: .

.

Аналогично решается задача, в условии которой даны координаты точки, через которую проходит прямая, и задана плоскость с помощью общего уравнения плоскости.

Составьте параметрические уравнения прямой a , проходящей через точку перпендикулярно к плоскости .

Направляющим вектором прямой a является нормальный вектор плоскости , то есть, . Теперь мы можем записать требуемые уравнения прямой a . Они имеют вид .

.

В заключении рассмотрим пример составления уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к плоскости, заданной тремя не лежащими на одной прямой точками.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы три точки . Напишите уравнения прямой a , проходящей через начало координат перпендикулярно к плоскости ABC .

Направляющим вектором прямой, проходящей через начало координат перпендикулярно к плоскости АВС , является нормальный вектор плоскости АВС . Нормальным вектором плоскости АВС является векторное произведение векторов и . Найти указанное векторное произведение мы сможем, если будем знать координаты векторов и . Вычислим координаты векторов и по координатам точек А , В и С (при необходимости смотрите статью нахождение координат вектора по координатам точек его конца и начала): .

Тогда, , а в координатной форме (при необходимости обращайтесь к статье координаты вектора).

Теперь мы можем записать требуемые уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости ABC : .

Приведем второй способ решения этой задачи.

Составим уравнение плоскости, проходящей через три заданные точки А , В и С , , откуда виден нормальный вектор этой плоскости . Далее принимаем этот вектор за направляющий вектор прямой a и записываем ее уравнения.

.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости

Статья раскрывает понятие о перпендикулярности прямой и плоскости, дается определение прямой, плоскости, графически иллюстрировано и показано обозначение перпендикулярных прямой и плоскости. Сформулируем признак перпендикулярности прямой с плоскостью. Рассмотрим условия, при которых прямая и плоскость будут перпендикулярны с заданными уравнениями в плоскости и трехмерном пространстве. Все будет показано на примерах.

Перпендикулярные прямая и плоскость – основные сведения

Прямая перпендикулярна к плоскости, когда она перпендикулярна к любой прямой, лежащей в этой плоскости.

Верно то, что и плоскость перпендикулярна к прямой, как и прямая к плоскости.

Перпендикулярность обозначается « ⊥ ». Если в условии задано, что прямая с перпендикулярна плоскости γ , тогда запись имеет вид с ⊥ γ .

Например, если прямая перпендикулярна к плоскости, тогда возможно провести только одну прямую, благодаря которой две смежных стены комнаты пересекутся. Прямая считается перпендикулярной к плоскости потолка. Канат, расположенный в спортзале рассматривается в качестве отрезка прямой, который перпендикулярен плоскости, в данном случае полу.

При наличии перпендикулярной прямой к плоскости, угол между прямой и плоскостью считается прямым, то есть равен 90 градусов.

Перпендикулярность прямой и плоскости – признак и условия перпендикулярности

Для нахождения выявления перпендикулярности необходимо использовать достаточное условие перпендикулярности прямой и плоскости. Оно гарантирует выполнение перпендикулярности прямой и плоскости. Данное условие считается достаточным и называют признаком перпендикулярности прямой и плоскости.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, которые лежат в этой плоскости.

Подробное доказательство приведено в учебнике геометрии 10 — 11 класса. Теорема применяется для решения задач, где необходимо установить перпендикулярность прямой и плоскости.

При условии параллельности хоть одной из прямых плоскости, считается, что вторая прямая также перпендикулярна к данной плоскости.

Признак перпендикулярности прямой и плоскости рассматривается еще со школы, когда необходимо решить задачи по геометрии. Рассмотрим подробнее еще одно необходимое и достаточное условие, при котором прямая и плоскость будут перпендикулярны.

Для того, чтобы прямая а была перпендикулярна плоскости γ , необходимым и достаточным условием является коллинеарность направляющего вектора прямой а и нормального вектора плоскости γ .

При a → = ( a x , a y , a z ) являющимся вектором прямой a , при n → = ( n x , n y , n z ) являющимся нормальным вектором плоскости γ для выполнения перпендикулярности нужно, чтобы прямая a и плоскость γ принадлежали выполняемости условия коллинеарности векторов a → = ( a x , a y , a z ) и n → = ( n x , n y , n z ) . Отсюда получаем, что a → = t · n → ⇔ a x = t · n x a y = t · n y a z = t · n z , t является действительным числом.

Данное доказательство основывается на необходимом и достаточном условии перпендикулярности прямой и плоскости, направляющего вектора прямой и нормального вектора плоскости.

Данное условие применимо для доказательства перпендикулярности прямой и плоскости, так как достаточно найти координаты направляющего вектора прямой и координаты нормального вектора в трехмерном пространстве, после чего производить вычисления. Используется для случаев, когда прямая определена уравнением прямой в пространстве, а плоскость уравнением плоскости некоторого вида.

Доказать перпендикулярность заданной прямой x 2 — 1 = y — 1 2 = z + 2 2 — 7 с плоскостью x + 2 2 + 1 y — ( 5 + 6 2 ) z .

Знаменатели канонических уравнений являются координатами направляющего вектора данной прямой. Отсюда имеем, что a → = ( 2 — 1 , 2 , 2 — 7 ) является направляющим вектором прямой x 2 — 1 = y — 1 2 = z + 2 2 — 7 .

В общем уравнении плоскости коэффициенты перед переменными x , y , z являются координатами нормального вектора данной плоскости. Отсюда следует, что n → = ( 1 , 2 ( 2 + 1 ) , — ( 5 + 6 2 ) ) — это нормальный вектор плоскости x + 2 2 + 1 y — ( 5 + 6 2 ) z — 4 = 0

Необходимо произвести проверку выполнимости условия. Получаем, что

2 — 1 = t · 1 2 = t · 2 ( 2 + 1 ) 2 = t · ( — ( 5 + 6 2 ) ) ⇔ t = 2 — 1 , тогда векторы a → и n → связаны выражением a → = ( 2 — 1 ) · n → .

Это и есть коллинеарность векторов. отсюда следует, что прямая x 2 — 1 = y — 1 2 = z + 2 2 — 7 перпендикулярна плоскости x + 2 ( 2 + 1 ) y — ( 5 + 6 2 ) z — 4 = 0 .

Ответ: прямая и плоскость перпендикулярны.

Определить, перпендикулярны ли прямая y — 1 = 0 x + 4 z — 2 = 0 и плоскость x 1 2 + z — 1 2 = 1 .

Чтобы ответить на вопрос перпендикулярности, необходимо, чтобы было выполнено необходимое и достаточное условие, то есть для начала нужно найти вектор заданной прямой и нормальный вектор плоскости.

Из прямой y — 1 = 0 x + 4 z — 2 = 0 видно, что направляющий вектор a → — это произведение нормальных векторов плоскости y — 1 = 0 и x + 4 z — 2 = 0 .

Отсюда получаем, что a → = i → j → k → 0 1 0 1 0 4 = 4 · i → — k → .

Координаты вектора a → = ( 4 , 0 , — 1 ) .

Уравнение плоскости в отрезках x 1 2 + z — 1 2 = 1 является эквивалентным уравнению плоскости 2 x — 2 z — 1 = 0 , нормальный вектор которой равен n → = ( 2 , 0 , — 2 ) .

Следует произвести проверку на коллинеарность векторов a → = ( 4 , 0 , — 1 ) и n → = ( 2 , 0 , — 2 ) .

Для этого запишем:

4 = t · 2 0 = t · 0 — 1 = t · ( — 2 ) ⇔ t = 2 t ∈ R ⇔ t ∈ ∅ t = 1 2

Отсюда делаем вывод о том, что направляющий вектор прямой не коллинеарен нормальному вектору плоскости. Значит, y — 1 = 0 x + 4 z — 2 = 0 — это прямая, не перпендикулярная к плоскости x 1 2 + z — 1 2 .

Ответ: прямая и плоскость не перпендикулярны.


источники:

http://matworld.ru/analytic-geometry/prjamaja-ploskost-online.php

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/perpendikuljarnye-prjamaja-i-ploskost-priznak-i-us/