Уравнение пуассона р и т

Уравнение Пуассона и распределение Больцмана (часть 1)

В продолжение предыдущей статьи «Есть ли плазма в космосе?» я хотел бы в познавательных целях рассказать об уравнениях, которые применялись при выводе уравнения Дебая-Хюккеля. Это уравнение Пуассона и распределение Больцмана.

Мы выяснили, что плазма квазинейтральна в равновесном состоянии и что под действием электрического поля от движущихся зарядов, заряженные частицы смещаются на дебаевскую длину и поле в пределах этой длины затухает. В электростатике взаимодействие заряженных частиц описывается кулоновским уравнением:

где – величины взаимодействующих точечных зарядов, – квадрат расстояния между зарядами. Коэффициент k является константой. Если мы используем систему в электростатических единицах СГС, обозначаемых СГСЭq, то k = 1. Если используется система СИ, то , где – диэлектрическая проницаемость среды, в которой расположены заряды, – электрическая постоянная, равная 8,86 ∙ .

В физике непосредственно силой не пользуются, а вводят понятие электростатического поля распределённых зарядов и измеряют поле величиной напряженности электрического поля. Для этого в каждую точку поля мысленно помещают единичный пробный заряд и измеряют силу, с которой поле зарядов действует на пробный заряд:

Отсюда, если подставить в это уравнение силу Кулона, то получим:

Но и этим физики не ограничиваются, для того чтобы описать полноценно электрическое поле. Рассмотрим единичный заряд, помещённый в электростатическое поле. Поле выполняет работу по перемещению этого заряда на элементарное расстояние ds из точки P1 в точку P2:

Величину называют разностью потенциалов или напряжением. Напряжение измеряется в Вольтах. Знак минус говорит нам о том, что само поле выполняет работу для переноса единицы положительного заряда. Силы, перемещающие заряды являются консервативными, так как работа по замкнутому пути равна всегда нулю, независимо от того, по какому пути перемещается заряд.

Отсюда следует глубокий смысл разности потенциалов. Если зафиксировать точку Р1 и перемещать заряд в переменную точку Р2, то работа зависит только от положения второй точки Р2. Таким образом мы можем ввести понятие потенциала. Потенциал – это силовая функция, показывающая какую необходимо выполнить работу полю, чтобы переместить заряд из бесконечности в данную точку P2, где условно принимают потенциал в бесконечности равным нулю.

Чтобы понять уравнение Пуассона, необходимо разбираться в «особой» векторной математике. Я вкратце расскажу про такие понятия как градиент поля и дивергенции (подразумевается, что читатель знаком с математическим анализом)
Пусть f(x,y,z) является некоторой непрерывной дифференцируемой функцией координат. Зная её частные производные в каждой точке пространства можно построить вектор, компоненты которого x, y, z равны соответствующим частным производным:

где – единичные векторы соответствующих осей x, y, z. Значок читается «набла» и является дифференциальным оператором

Этот оператор ввёл в математику Гамильтон. С набла можно выполнять обычные математические операции, такие как обычное произведение, скалярное произведение, векторное произведение и так далее.

Теперь вернёмся к электростатическому полю E. С одной стороны изменение потенциала при переходе из одной точки в другую имеет следующий вид:

С другой стороны, согласно формуле (*)

Применяя только что введённое понятие градиент, эта формула преобразуется в:

Теперь разберёмся с таким понятием, как дивергенция поля. Рассмотрим конечный замкнутый объем V произвольной формы (см. рис. ниже). Обозначим площадь этой поверхности S. Полный поток вектора F, выходящего из этого объема по определению равно

, где da является бесконечно малым вектором, величина которого равна площади малого элемента поверхности S, а направление совпадает с наружной нормалью к этому элементу.
Возьмём этот поток вектора F поделим на объём и найдём предел при стремящейся к нулю, т.е. будем стягивать объём в бесконечно малую точку.

Мы подошли к понятию дивергенции. Обозначается дивергенция символом div и является отношением потока вектора F к объёму V, при V стремящейся к нулю.

Прежде чем показать, как получается уравнение Пуассона, важно знать закон Гаусса и теорему Гаусса. Представим себе сферу, внутри которой находится заряд q. Заряд создаёт вокруг себя электрическое поле напряжённости E. Возьмём поток вектора E

где S площадь нашей сферы равная . Следовательно

Это и есть закон Гаусса, утверждающий, что поток электрического поля E через любую замкнутую поверхность равен произведению на полный заряд, охватываемый поверхностью:

где – плотность объёмного заряда, т.е. величина электрического заряда в единице объёма, и – элементарный объём, выделенный внутри нашего замкнутого объёма.

Теорема Гаусса (полное название теорема Гаусса-Остроградского) чисто математическая теорема о дивергенции. Перепишем полный поток вектора F следующим образом:

В пределе, когда N → ∞, →0 величина в скобках становится дивергенцией и сумма переходит в объёмный интеграл:

Это и есть теорема Гаусса, и является поистине самой важной формулой полевой теории. Применим эту теорему к электростатическому полю. С одной стороны, согласно закону Гаусса

А с другой стороны, согласно теореме Гаусса (только не путайте теорему с законом Гаусса):

Комбинируя два последних уравнения, получим:

Вспомним формулу (**) и подставим сюда вместо E потенциал поля

Дивергенция градиента это новый оператор, который в математике называют оператор Лапласа, или сокращённо лапласиан. Лапласиан обозначается значком набла следующим образом и равен

Перепишем предыдущую формулу в форме лапласиана:

Наконец мы получили уравнение Пуассона. В первой статье это уравнение было немного в другой форме, с учётом диэлектрической проницаемости среды. Вспомните силу Кулона в системе СИ, там константа . Соответственно в законе Гаусса будет не , а коэффициент . Таким образом получаем уравнение Пуассона в форме представленной в предыдущей статье

Таким образом по сути уравнение Пуассона – это закон Кулона (а точнее закон Гаусса) переписанный в другой форме, в обозначениях векторного дифференциального анализа.

В следующей статье мы разберём важное распределение из математической статистики — распределение Больцмана.

Уравнение Пуассона и математическая постановка задач электростатики

Существует большое количество случаев, когда самым удобным методом нахождения напряженности поля считается решение дифференциального уравнения для потенциала. После его получения применим в качестве основы теорему Остроградского-Гаусса в дифференциальной форме:

где ρ является плотностью распределения заряда, ε 0 — электрической постоянной, d i v E → = ∇ → E → = ∂ E x ∂ x + ∂ E y ∂ y + ∂ E z ∂ z — дивергенцией вектора напряженности и выражением, связывающим напряженность поля и потенциал.

Произведем подстановку ( 2 ) в ( 1 ) :

Учитывая, что d i v g r a d φ = ∇ 2 φ = ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 + ∂ 2 φ ∂ z 2 , где ∆ = ∇ 2 — это оператор Лапласа, равенство ( 3 ) принимает вид:

Выражение ( 4 ) получило название уравнения Пуассона для вакуума. При отсутствующих зарядах запишется как уравнение Лапласа:

После нахождения потенциала переходим к вычислению напряженности, используя ( 2 ) . Решения уравнения Пуассона должны удовлетворять требованиям:

  • значение потенциала как непрерывная функция;
  • потенциал должен быть конечной функцией;
  • производные потенциала как функции по координатам должны быть конечными.

При наличии сосредоточенных зарядов в объеме V , решение уравнения ( 4 ) будет выражаться для потенциала вида:

Общая задача электростатики сводится к нахождению решения дифференциального уравнения, то есть уравнения Пуассона, удовлетворяющего вышеперечисленным требованиям. Теоретические вычисления известны для небольшого количества частных случаев. Если возможно подобрать функцию φ , удовлетворяющую условиям, то она является единственным решением.

В таких задачах не всегда необходимо задавать заряды или потенциалы во всем пространстве. Для нахождения электрического поля в полости, окруженной проводящей оболочкой, достаточно вычислить поле тел, находящихся внутри нее.

Любое решение уравнения Пуассона ограниченной области может быть определено краевыми условиями, накладывающимися на поведение решения. Границы перехода из одной среды в другую имеют условия, которые должны быть выполнены:

E 2 n — E 1 n = 4 π σ , или ∂ φ 1 ∂ n — ∂ φ 2 ∂ n = 0 .

где σ — это поверхностная полость свободных зарядов, n – единичный вектор нормали к границе раздела, проведенный из среды 1 в 2 , τ — единичный вектор, касательный к границе.

Эти уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной вектора напряженностей электрического поля при переходе через любую заряженную поверхность независимо от ее формы и наличия или отсутствия зарядов вне ее.

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Запись уравнения может быть как при помощи декартовых координат, также и сферических, цилиндрических, полярных.

При наличии сферических r , θ , υ уравнение Пуассона запишется как:

1 r 2 · ∂ ∂ r r 2 ∂ φ ∂ r + 1 r 2 sin θ ∂ θ sin θ · ∂ φ ∂ θ + ∂ 2 φ r 2 sin 2 θ ∂ φ 2 = — 1 ε 0 ρ .

В полярных r , θ :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ r 2 ∂ θ 2 = — 1 ε 0 ρ .

В цилиндрических r , υ , z :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ ∂ z 2 + ∂ 2 φ r 2 ∂ υ 2 = — 1 ε 0 ρ .

Примеры решения задач

Найти поле между коаксиальными цилиндрами с радиусами r 1 и r 2 и с имеющейся разностью потенциалов ∆ U = φ 1 — φ 2 .

Решение

Необходимо зафиксировать уравнение Лапласа с цилиндрическими координатами, учитывая аксиальную симметрию:

1 r · ∂ ∂ r r ∂ φ ∂ r = 0 .

Решение имеет вид φ = — A ln ( r ) + B . Для этого следует выбрать нулевой потенциал на нужном цилиндре, тогда:

φ ( r 2 ) = 0 = — A ln r 2 + B , следовательно

φ ( r 1 ) = ∆ U = — A ln r 1 + B , получим:

A = ∆ U ln r 2 r 1 .

φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Ответ: поле с двумя коаксиальными цилиндрами может быть задано при помощи функции φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Найти потенциал поля, которое создает бесконечно круглый цилиндр с радиусом R и объемной плотностью заряда ρ . Использовать уравнение Пуассона.

Решение

Необходимо направить ось Z по оси цилиндра. Видно, что цилиндрическое распределение заряда аксиально симметрично, потенциал имеет такую же симметрию, иначе говоря, считается функцией φ ( r ) с r , являющимся расстоянием от оси цилиндра. Для решения используется цилиндрическая система координат. Уравнение Пуассона в ней запишется как:

φ 2 = C 2 ln r + C ‘ 2 .

C 1 , C ‘ 1 , C 2 , C ‘ 2 — это постоянные интегрирования. Имеем, что потенциал во всех точках должен быть конечным, а l i m r → 0 ln r = ∞ . Отсюда следует, что C 1 = 0 . Далее необходимо пронормировать потенциал, задействовав условие φ 1 ( 0 ) = 0 . Получим C ‘ 1 = 0 .

Поверхностные заряды отсутствуют, поэтому напряженность электрического поля на поверхности шара является непрерывной. Следовательно, что и производная от потенциала также непрерывна при r = R , как и сам потенциал. Исходя из условий, можно найти C 2 , C ‘ 2 :

C 2 ln R + C ‘ 2 = — 1 4 ρ ε 0 R 2 .

C 2 R = — 1 2 ρ ε 0 R .

Значит, полученные выражения записываются как:

Ответ: потенциал поля равняется:

Распределение Пуассона и формула Пуассона

Краткая теория

Рассмотрим некоторый поток событий, в котором события наступают независимо друг от друга и с некоторой фиксированной средней интенсивностью $lambda$ (событий в единицу времени). Тогда случайная величина $X$, равная числу событий $k$, произошедших за фиксированное время, имеет распределение Пуассона. Вероятности вычисляются по следующей формуле:

Для пуассоновской случайной величины математическое ожидание и дисперсия совпадают с интенсивностью потока событий:

$$M(X)=lambda, quad D(X)=lambda.$$

Распределение Пуассона играет важную роль в теории массового обслуживания . При увеличении $lambda$ данное распределение стремится к нормальному распределению $N(lambda, sqrt)$. В свою очередь, оно само является “приближенной” моделью биномиального распределения при больших $n$ и крайне малых $p$ (см. теорию про формулу Пуассона ).

Распределение Пуассона – определение

Распределение Пуассона — вероятностное распределение дискретного типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. Другими словами, если событие происходит с некоторой периодичностью, то мы можем определить вероятность, что такое событие произойдёт n раз за интересующий нас период.

Параметр лямбда – λ

Распределение Пуассона зависит только от одного параметра – λ, данный параметр зависит от вероятности успешного события и общего количества событий.
Успешное событие: распределение Пуассона применяется только тогда, когда есть разделение на результат “да” и “нет”, например, лампочка перегорела: да – успешное событие; шина прокололась: да – успешное событие и так далее.

λ = n*p, где p – вероятность успешного события, а n – общее количество событий, для которых ведётся расчёт.
Например, если гроза проходит раз в месяц и мы хотим посчитать вероятность грозы за 24 месяца, то вероятность равна единице, а количество событий равно 24, откуда лямбда равна 24.
Можно считать по-другому, вероятность грозы в конкретный день – 1/30, количество событий – 730 дней, лямбда равна 24.3.

Пример

В тысяче ящиков с антоновками в одном попадается голден, какова вероятность, что в 5000 ящиках будет меньше 4 ящиков с яблоком голден?

Вероятность ящика с яблоком голден – 0.1% (1 ящик на 1000 = 1/1000, если в процентах – 1/1000 * 100 = 0.1%)
Общее количество событий – 5000 ящиков
Из вышесказанного следует:
λ = 5000 * 0.001 = 5

Функция вероятности (формула Пуассона)

Вероятность, что успешное событие произойдёт k раз:

Пример

В тысяче ящиков с антоновками в одном попадается голден, какова вероятность, что в 5000 ящиках будет 2 ящика с яблоком голден?

Из предыдущего примера мы знаем, что λ=5, теперь мы ищем вероятность, что k будет равно 2, для этого используем формулу функции вероятности:

f(4) = P(k = 4) = λ k e -λ / k! = 5 2 * e -5 / 2! = 0.084 = 8.4%

Условия возникновения распределения Пуассона

Рассмотрим условия, при которых возникает распределение Пуассона.

Во-первых, распределение Пуассона является предельным для биномиального распределения, когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):

.

В математическом анализе доказано, что распределение Пуассона с параметром λ = np можно приближенно применять вместо биномиального, когда число опытов n очень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.

Во-вторых, распределение Пуассона имеет место, когда есть поток событий, называемым простейшим (или стационарным пуассоновским потоком). Потоком событий называют последовательность таких моментов, как поступление вызовов на коммуникационный узел, приходы посетителей в магазин, прибытие составов на сортировочную горку и тому подобных. Пуассоновский поток обладает следующими свойствами:

  • стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;
  • ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;
  • отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период.

Характеристики случайной величины, распределённой по закону Пуассона

Характеристики случайной величины, распределённой по закону Пуассона:

математическое ожидание ;

стандартное отклонение ;

дисперсия .

Распределение Пуассона и расчёты в MS Excel

Вероятность распределения Пуассона P(m) и значения интегральной функции F(m) можно вычислить при помощи функции MS Excel ПУАССОН.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).

MS Excel требует ввести следующие данные:

  • x – число событий m;
  • среднее;
  • интегральная – логическое значение: 0 – если нужно вычислить вероятность P(m) и 1 – если вероятность F(m).

Почему Пуассон изобрел свое распределение?

Чтобы предсказывать количествобудущихсобытий!

Или более формально: чтобы предсказывать вероятность данного числа событий, происходящих в определенный интервал времени.

В продажах, например, “событие” это покупка (сам момент покупки, не просто выбор). Событием может быть количество посетителей в день на веб-сайте, кликов на рекламном объявлении в следующем месяце, число звонков в рабочее время или число людей, которые умрут от смертельных заболеваний в следующем году, и так далее.

Недостатки биномиального распределения

a) Биномиальная случайная величина бинарна — 0 или 1.

В примере выше у нас было 17 лайков в неделю. Это 17/7 = 2.4 человека в день и 17/(7*24) = 0.1 в час.

Если моделировать вероятность успеха в часах (0.1 человек в час), используя биномиальную случайную величину, получим, что в большем количестве часов лайков будет 0, а в некоторые часы ровно 1 лайк. Также возможно, что в час будет больше 1 лайка (2, 3, 5 и т.д.).

Проблема с биномиальным распределением в том, что оно не может содержать более одного события в единицу времени (1 час в примере).

Так может разделить 1 час на 60 минут и принять за единицу времени минуту? Тогда в 1 час поместится несколько событий. (Помним, что 1 минута содержит только ноль или одно событие).

Теперь проблема решена?

Вроде бы. Но что если в течение одной минуты мы получим несколько лайков? (например, кто-то поделился постом в Твиттере, и трафик вырос в эту минуту). Что тогда? Можно разделить минуту на секунды. Тогда единицей времени становится секунда, и в минуту помещается несколько событий. Но проблема бинарного контейнера будет существовать для все меньших единиц времени.

Дело в том, что биномиальная случайная величина может содержать несколько событий, если делить единицу времени на все меньшие единицы. В результате изначальная единица времени будет содержать более одного события.

Математически это означает n → ∞. Если предположим, что среднее значение фиксировано, тогда p → 0. В противном случае n*p — количество событий — чрезмерно возрастет.

Единица времени с использованием этого лимита может быть бесконечно мала. Больше не нужно беспокоиться о более чем одном событии в единицу времени. Так получается распределение Пуассона.

b) В биномиальном распределении количество попыток (n) должно быть известно заранее.

Нельзя посчитать вероятность успеха при помощи биномиального распределения, зная только среднее значение (17 человек в неделю). Нужно больше информации (n и p), чтобы использовать формулу.

Распределение Пуассона же не обязывает вас знать ни n ни p. Предположим, что n бесконечно велико, а p бесконечно мала. Единственный параметр распределения — значение λ (ожидаемое значение x). В реальной жизни чаще известно только значение (например, с 2 до 4 часов дня я принял 3 телефонных звонка), а не значения n и p.

Решение задачи на распределение Пуассона в Excel

Пример 1. Отдел технического контроля определил, что среднее число не соблюденных допусков в размерах производимых деталей составляет 6. Определить вероятности следующих событий обеими рассматриваемыми функциями (для сравнения результатов вычислений):

  1. Вероятность наличия 3 и менее погрешностей в случайно отобранной детали.
  2. Вероятность наличия ровно 3 погрешностей в случайно выбранной детали.

Вид таблицы данных:

Рассчитаем вероятность наличия трех и менее дефектов с помощью функций:

  • B3 – среднее значение;
  • B2 – предполагаемое значение, для которого рассчитывается вероятность;
  • ИСТИНА – указатель на интегральный тип функции.

Для нахождения вероятности выбора детали с наличием ровно трех дефектов используем функции:

Для расчета вероятности точного совпадения третий аргумент задан в качестве логического ЛОЖЬ.

Как видно, результаты вычислений обеих функций идентичны.

Числовые характеристики случайной величины Х

Математическое ожидание распределения Пуассона
M[X] = λ

Дисперсия распределения Пуассона
D[X] = λ

Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 P(5) = λ 5 e -5 /5! = 0.03609
Математическое ожидание: M[X] = λ = 2
Дисперсия: D[X] = λ = 2

Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:

X012m
Pe -2020e -20200e -2020 m e -20 /m!

Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P200(1).
Получаем: . Тогда P200(1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k . Тогда P200(1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k
в) Задано: n = 200, p = 1/200, k > 2. Найдем P200(k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем

Рассмотрим случай, когда n является достаточно большим, а p — достаточно малым; положим np = a, где a — некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:

Вероятность появления k событий за время длительностью t можно также найти по формуле Пуассона:

где λ — интенсивность потока событий, то есть среднее число событий, которые появляются в единицу времени.

Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.

Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5
Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e – λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e – λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:

Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e – λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e – λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366

Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P1(0) = e -λ1*t = e -0.02*10 = 0,8187

Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P2(0) = e -λ2*t = e -0.05*10 = 0,6065

а) оба элемента будут работать безотказно;
P(2) = P1(0)*P2(0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P1(0)*(1-P2(0)) + (1-P1(0))*P2(0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321

Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание: поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать теорему Лапласа .

Формула Пуассона

Давайте получим формулу Пуассона математически из формулы функции биномиального распределения.


источники:

http://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/uravnenie-puassona/

http://exceltut.ru/raspredelenie-puassona-i-formula-puassona/