Уравнение расчета воздухообмена аварийной вентиляции по изменению концентрации

Аварийная вентиляция кратности — примеры расчета воздухообмена

Описание и расчет норм кратности воздухообмена для производственных помещений. Согласно нормам, утвержденным СНиП и ТБ, относящимся к созданию систем вентиляции, кратность воздухообмена регламентируется по количеству токсичных примесей.

Процесс проектирования аварийной вентиляции

Значение «кВ» применяют тогда, когда требуется эффективная оценочная характеристика воздухообмена в промышленной постройке. Таким показателем воздухообмена выражается отношение общего объема приходящего воздуха («L» (м3 \ч)) к показателю «Vn», (м3), который характеризует суммарный объем чистого пространства помещения. Расчет производится на принятый отрезок времени.

Если на стадии проектирования были по стандартам организованы проект и все расчеты, то кратность будет меняться от 1 до 10 единиц для промышленных помещений.

Кроме теоретической базы и формул для расчета, чтобы определить необходимый показатель, специалисты предпочитают анализировать естественные условия на похожих работающих производствах, имеющих фактические данные о токсических выделениях.

В процессе определения кратности используют отраслевые документы, СниПы, санитарные стандарты.

Циркуляция воздуха в промышленных зданиях

Во время планирования промышленных построек и их строительства должны быть грамотно расчитаны в помещениях вентиляционные пути и определена циркуляция воздуха. Для этого не обойтись без использования показателя кратности воздухообмена, который определяется на основе табличных сводок загрязненности пространства оксидами, окисями ацетилена и другими токсичными веществами.

Выполняя расчет воздухообмена в здании, выделяемое тепло таким образом учитывается, чтобы полученное превышающее норму количество могло беспрепятственно удаляться круглый год.

Для уменьшения количества избыточного тепла применяют аэрацию. Такой процесс очень распространен в химической промышленности, например, на производственных участках, предусматривающих термообработку. В таком случае благодаря аэрации показатель кратности воздухообмена летом достигает 40-60 пунктов.

При такой организации воздушных путей и воздухообменных показателях достигаются предусматриваемые санитарными нормами метеорологические стандарты.

Так, возведение помещений и их внутреннее обустройство потом оказывает влияние на расчетный показатель кратности воздухообмена, для этой цели организовываются специальные открываемые проемы, гарантирующие устранение вредных примесей и приток свежего воздуха работникам.

Определение кратности

Во время выполнения производственно-технологических расчетов не принимается во внимание габаритное оборудование. Например, если в основном производстве задействованы насосные агрегаты, не оснащенные специализированными вытяжками, тогда в атмосфере объем вредных примесей будет в 6-7 раз выше по сравнению с утвержденными нормами.

В производственных помещениях, имеющих вспомогательное значение (исключая моечные отделения), показатель кратности воздухообмена вычисляется по показателям кратности обмена.

Аварийная вентиляция кратности

Проектирование производственных зданий обязательно должно включать создание проекта аварийной вентиляции для высокоскоростного удаления газообразных токсичных веществ.

Такая система удобна при выполнении отступлений от обычных производственных маршрутов, и жизненно необходима при авариях. Для исключения попадания неблагоприятных компонентов в коммуникационные пути здания рекомендовано организовывать аварийные пути вывода с исключением компенсационной составляющей притока.

Примеры расчета аварийной вентиляции исходя из нормативных документов

Показатель кратности воздухообмена вытяжной системы формируется исходя из санитарных регламентных норм и отраслевых ТБ-данных. Такой показатель аварийной вентиляции, как кратность воздухообмена, устанавливают индивидуально под каждое помещение, исходя из расчетных данных проекта.

В специальных нормах, касающихся проектирования и возведения промышленных построек, относящихся конкретно к каждой промышленной отрасли, а также в СНиП и ТБ, даются разные данные кратности часового воздухообмена. Каждое значение дается в зависимости от типа промышленного помещения: вспомогательные, рабочие зоны цехов.

Так, соответствующий СниП регламентирует расчетные числовые значения для второстепенных помещений на производствах.

Также показатели кратности воздухообмена для вспомогательных построек содержатся в СНиП П-92—76.

При непрерывном поступлении в промзону токсичных газообразных примесей и росте градуса, за норму кратности принимают пороговое значение для всех типов вредных выделений на производстве, оказывающих неблагоприятное воздействие.

Так, зная общий объем помещения, выраженный в кубических метрах, и норму кратности воздухообмена, воспользовавшись простыми математическими формулами можно определить, какой нужен часовой объем воздуха для конкретной зоны.

n — представляет норму кратности воздухообмена,

S — площадь помещения,

Н — высоту помещения.

Нормы воздухообмена в помещениях производственных предприятий

Для производственных зданий обычно предусматривают глобальную систему вентиляции, потребности которой рассчитывают исходя из конкретных производственных условий и наличия тепла, конденсата или жидкости, вредных частиц.

Если в помещении установлено выделяющее газы или пар оборудование, показатель необходимого воздухообмена вычисляется с учетом выделений такого оборудования, арматуры и комуникаций.

В техдокументации на помещение заложен каждый необходимый показатель, в противном же случае данные предоставляются фактическими параметрами. Регламент данного расчета приведен в соответствующем СниП, а также в ВСН21—77.

Если рассчитанная кратность воздухообмена выше десятикратного показателя, нужно подкорректировать один из разделов документов, относящихся к строительству. Т.е., чтобы во время производства снизить выделение токсичных и вредных веществ, по периметру всего помещения нужно предусмотреть ряд дополнительных мер.

Проектирование производственных предприятий: санитарные нормы

В соответствии с нормами СниП, любые нежелательные вещества, выделяемые в производственном помещении, принимаются из расчетов проектной документации (технологической ее части).

Если в технологических нормах проектирования подобные данные не указаны, количество выделяемых в помещении токсичных веществ допускается принимать на основе фактов, полученных в соответствующем исследовании. Искомые значения также могут быть найдены в сопроводительной документации к специализированной технике.

Токсические вещества выбрасываются в пространство из рассредоточенных и сосредоточенных устройств общеобменной вентиляции.

При проектировании рабочей зоны промназначения с отсутствием естественного проветривания, на одного субъекта должно подаваться не менее 60 м3/ч воздуха механической вентиляцией.

Особенности проектирования аварийного воздухообмена

Базовый расчёт воздухообменных установок выполняется без учёта критических ситуаций, поскольку это может сделать её работу экономически неэффективной. Особые случаи — с созданием опасных концентраций газов — предотвращают установкой специальных систем, поэтому отдельный расчет аварийной вентиляции выполняется только для тех зданий, где вероятность подобных аварий обусловлена технологическими особенностями производства.

Сразу подчеркнём, что на промышленные системы аварийного воздухообмена также возлагается задача по нейтрализации опасной составляющей в удаляемых потоках (если в них присутствуют токсичные или взрывоопасные компоненты).

Отдельное направление аварийной вентиляции представлено системами дымоудаления, установка которых обязательна для обширного списка зданий и помещений.

Специфика организации аварийного воздухообмена

Главная особенность расчета вентиляции для аварийных режимов заключается в том, что для неё не всегда нужна отдельная подсистема. С учётом этого факта подобные расширения для систем дополнительного воздухообмена разрабатываются исключительно в индивидуальном порядке.

Основные положения, определяющие логику построения аварийных вентиляционных подсистем, изложены в СНиП 41-01-2003 «Вентиляция и кондиционирование».

Методические указания и базовые нормативы, используемые при математических расчётах, приведены в СНиП 2.04.05-91.

Базовая задача аварийной вентиляции – предотвращение опасных концентраций аэрозольных и газовых смесей внутри помещения при возникновении аварий или пожаров.

Для небольших помещений, не относящихся к категории пожароопасных, аварийный воздухообмен может разрабатываться на базе основной вентиляции. Техническое исполнение в данном случае бывает следующим:

  • установка добавочных вытяжных вентиляторов;
  • создание аварийных воздуховодов с управляемыми задвижками, открываемыми в случае аварий.

Основной принцип построения подобных вентиляционных установок – приточно-вытяжной с механизированной вытяжкой, но в тех случаях, когда «аварийные» газы и вредности легче воздуха, допускается установка нагнетающих установок на приточный канал.

Роль аварийной вентиляции

Таким образом, реализуется вытесняющий вариант воздухообмена, производительность которого должна быть выше, чем потенциальная скорость генерации опасных газов.

Важный момент: если «аварийные» газовые смеси легче воздуха – вытяжку следует устанавливать в верхней части помещения. Соответственно, если тяжелее – то в нижней части. Отметим, что данный факт часто определяется невозможность использования основной вентиляции в качестве аварийной.

Практически для всех категорий пожароопасных помещений (имеющих буквенный код А, Б, В1-В4, Г, Д) рекомендуется использовать вентиляционные установки с механизированным побуждением.

Исключением могут быть те здания категорий Г и Д, в которых производительность естественного воздухообмена достаточна для ликвидации аварийной загазованности (расчёт должен быть производён для летнего периода).

Наиболее простым вариантом естественной аварийной вентиляции являются автоматически открываемые оконные проёмы или установка резервного вентилятора на основную вытяжку.

Также следует упомянуть, что аварийная газовая смесь часто имеет агрессивный химический состав (или высокую температуру). Этот факт должен быт учтён при разработке воздуховодов и фильтрующих устройств.

Особенности расчёта

Задача проектировщика – рассчитать, какая производительность аварийных вентиляционных установок необходима, чтобы снизить опасную концентрацию веществ до стандартных ПДК (определяемых по ГОСТ 12. 1.005-88).

Основное отличие расчёта аварийных систем от обычной вентиляции заключается в том, что в расчёт должен быть выполнен с учётом двух стадий аварии:

  • период активной генерации (или поступления) вредных веществ (ta1);
  • время, в течение которого производится снижение загазованности (без генерации вредных веществ, ta2).

Если аварийное отключение оборудования происходит в автоматическом режиме, то длительность первого периода составляет 120 секунд. Если в ручном — 300 секунд. В тех случаях, когда вероятны взрывные выбросы, длительность первого периода принимают равным 0 секунд.

Максимальное время работы аварийных подсистем – 1 час.

Общая продолжительность работы дополнительной вентиляции равна сумме этих двух периодов:

Расчёт замещаемых объёмов воздушной смеси выполняется с учётом количества и концентрации вредных веществ.

Формула для расчёта объёмов замещения

Важно учитывать, что в данном случае может действовать несколько категорий опасных факторов:

  • токсичность;
  • взрывоопасная концентрация газов и пыли;
  • потеря видимости (задымление или запылённость);
  • опасные температурные режимы газовых смесей (типовой пример использования данного параметра – расчёт воздухообмена в помещениях для хранения ЛВЖ).

Также в ходе расчёта мощности силовых установок необходимо учитывать, что для выведения через аварийные каналы загрязнённого воздуха может понадобиться дополнительная фильтрация, что потребует более высоких энергетических затрат.

Способы технической реализации

Разработка аппаратно-технической части аварийной вентиляции производится с учётом того, что оборудование этой подсистемы имеет два рабочих состояния:

  • ожидание («пассивный» режим);
  • осуществление воздухообмена («активный» режим).

Как следует из названий этапов, в первом случае силовые установки отключены, а вентиляционные каналы перекрыты.

Аварийная вентиляция

Работа в пассивном режиме вовсе не означает полное отключение системы, так как центральный контролер, сеть датчиков и механизмы, управляющие заслонками и вентиляторами, постоянно находятся в активном состоянии.

Более того, как для пассивного, так и для активного режимов работы аварийной вентиляции требуется бесперебойный источник электропитания.

Также отличается способ размещения приточных и вытяжных каналов. Это может быть классическая схема с установкой потолочных диффузоров, или одно из следующих специализированных решений:

  • воздушная завеса, отсекающая опасные потоки воздуха от защищаемой зоны;
  • локальная вытяжка, реализованная в виде зонта над вероятной зоной технологического выброса;
  • отдельная вентиляционная шахта, оборудованная мощным вытяжным вентилятором.

Кроме этого, проектирование и монтаж аварийных воздухообменных установок следует производить с учётом специальных требований:

  • полная герметизация всех воздуховодов;
  • применение огнестойких материалов (а также устойчивых к высокой химической активности удаляемых воздушных смесей);
  • обеспечение должного уровня искрозащищённости в силовых установках;
  • организация мер по огневой стойкости кабелей электропитания и управления.

При проектировании аварийных систем для химических производств необходимо не забывать о резервировании всех важных узлов установки, особенно в тех случаях, когда вероятный выброс может быть токсичным.

О важности автоматизации

Рассматривая аварийные системы вентиляции, нельзя не отметить, что обязательным элементом их конструкции являются датчики, реагирующие на превышение допустимых норм загрязнения.

Если выражаться точнее, то каждой букве пожарной классификации соответствует утверждённый набор датчиков, используемых для сигнализации и запуска аварийных подсистем.

Расположение, тип и основные характеристики аварийных детекторов обязательно указываются на схемах с использованием специальных обозначений.

Системы дымоудаления

Среди аварийных систем вентиляции особое место занимают воздухообменные установки, обеспечивающий отвод дыма при возникновении пожаров. Важность их трудно переоценить, поскольку основной причиной гибели людей на пожаре является не огневое поражение, а отравление продуктами горения.

При разработке таких систем следует просчитывать не только объёмно-скоростные показатели воздушных потоков, но и необходимую разность давлений. Она должны быть такой, чтобы воздух из сопредельных помещений создавал «подпирающие» потоки, обеспечивающие вытеснение дыма в вытяжные шахты.

Кроме этого, есть существенные отличия при комплектации силового оборудования. Согласно СНиП 2.04.05-91, оно должно обеспечивать непрерывную работу системы в течение 2 часов даже в том случае, когда температура воздушных масс составляет 400 0 C (и один час при температуре 600 0 C).

Система дымоудаления

Основным документом, регламентирующим разработку противодымных систем, является СНиП 41-01-2003. При разработке аварийных комплексов важно учитывать их существенные отличия от других вариантов вентиляции:

  • используется особо надёжная схема соединений между секциями воздуховодов, обеспечивающая неразрывность и сохранение рабочих сечений при воздействии высоких температур;
  • применение автоматически управляемых клапанов для отсечения пламени, которые тоже должны быть выполнены в огнестойком варианте;
  • силовой блок состоит из двух модулей – вентиляторы подпора и вытяжные насосы;
  • в режиме ожидания все рабочие каналы закрыты управляемыми клапанами.

Компания «Мега.ру» принимает заказы на проектирование и модернизацию систем вентиляции любой конфигурации, включая аварийные и дымоудаляющие установки. Уточнить детали сотрудничества и рассчитать стоимость работ можно по телефонам, указанным в разделе «Контакты».

Проектирование аварийной системы вентиляции в промышленных помещениях

На производственных предприятиях на случай аварии технологического процесса, сопровождаемого выбросом ядовитых, взрывоопасных и других вредных для здоровья паров и аэрозолей необходимо предусмотреть аварийную вентиляцию. Аварийная вентиляция используется на начальном этапе аварии и служит для снижения концентрации вредностей ниже ПДК(предельно допустимая концентрация) и обеспечения эвакуации людей. Время эвакуации зависит от количества рабочих в цеху.

Особенности системы аварийной вентиляции

В большинстве случаев аварийная вентиляция – это механическая вытяжная система, которая дополняет общеобменную и местную системы вентиляции. Естественную аварийную вентиляцию допускается проектировать в помещениях категории В, Г и Д при условии обеспечения требуемого расхода при расчетных параметрах Б теплого периода года. Чаще всего при проектировании механической аварийной вентиляции специалисты нашей проектной компании по климатическим системам используют крышные, осевые и центробежные вентиляторы.

Крышные вентиляторы для аварийной вентиляции

Крышные вентиляторы устанавливают в перекрытии цеха и не занимают полезной площади внутри помещения. Еще одним преимуществом таких вентиляторов является отсутствие разветвленной сети воздуховодов. Из минусов можно отметить отверстие в кровле, при некачественной изоляции кровли возможны подтекания.

Осевые вентиляторы для аварийной вентиляции

Осевые вентиляторы устанавливаются непосредственно в стену, они обладают значительным расходом воздуха, но ограничены по сопротивлению, поэтому к ним нельзя подключать воздуховоды. Отсутствие воздуховодов является недостатком, в случае если вредности при аварии могут выделиться в определенной зоне. Еще одним отрицательным качеством является использование в зимний период, ведь для защиты от холодного воздуха используются различные клапаны перекрывающие поток воздуха, в то время когда вентилятор не работает, жалюзи таких клапанов могут смерзаться, поэтому необходимо проектировать клапаны с приводами.

Центробежные или радиальные вентиляторы для аварийной вентиляции

Радиальные вентиляторы имеют множество преимуществ, во-первых, к ним можно подключить разветвленную сеть воздуховодов, которую можно подвести непосредственно к участкам, где возможен выброс. Во-вторых, вентилятор можно установить в любом удобном месте, даже за пределами зданий. В-третьих, для рассеивания некоторых вредных веществ, особенно на заводах где рядом расположено множество цехов необходимо поднимать вытяжные трубы на значительную высоту, именно поэтому радиальные вентиляторы часто закладывают в проект аварийной вентиляции.

Расчет воздухообмена аварийной вентиляции по кратности и концентрации

На расчет объема воздуха аварийной вентиляции влияет скорость изменения концентрации вредностей в период после аварии, которая в свою очередь зависит от величины утечки вещества, объема помещения и воздухообмена в нем, а также от концентрации данного вещества в наружном воздухе. Поэтому при проектировании вентиляции промышленных предприятий всегда необходимо тесно сотрудничать с технологами, ведь они могут предоставить всю необходимую информацию о технологическом процессе. В простейшем случае используют расчет объема воздуха по кратности, которая принимается от 7 до 15 крат в час. Общеобменная и местная вытяжные системы вентиляции складываются, а аварийная берется из разности.

Формулы расчета воздухообмена аварийной вентиляции по кратности

где, Lкр – требуемы расход воздуха рассчитанный по кратности, K – кратность, количество полных воздухообменов в час помещения, V – объем помещения в м3.

Lа=Lкр – Lобщ – Lм, м3/ч

где, Lа – расход воздуха аварийной системы вентиляции, Lобщ – расход воздуха общеобменной вентиляции, Lм — расход воздуха местной вентиляции.

Расчет аварийной вентиляции по кратности является не достаточно верным, более обоснованно считать на основании анализа изменения концентрации в помещении в зависимости от времени.

Уравнение расчета воздухообмена аварийной вентиляции по изменению концентрации

где, Kz=0 – начальная концентрация вредности в помещении, то есть концентрации до момента аварии в мг/м3, А – количество вредностей которые поступают в помещение после аварии в мг/с, L – воздухообмен в помещении в м3/с, V – объем помещения в м3, z- время поступления вредностей в с.

Данное уравнение достаточно точно определяет изменение концентрации со временем и момент достижения ПДК, зная этот момент и концентрацию вредности в наружном воздухе достаточно легко определить расход воздуха для аварийной вентиляции. Основной сложностью при проектировании аварийной вентиляции данным методом является то, что не всегда возможно достаточно точно определить объем выбросов.

Когда общеобменная вентиляция обеспечивает необходимую кратность воздухообмена и в случае аварии, то при проектировании общеобменной вентиляции необходимо запроектировать резервные вентиляторы, которые должны автоматически включиться в случае остановки основных, таким образом система резервируется и повышается ее надежность.

Проектирование и монтаж аварийной вентиляции

Специалисты OVK-Group занимаются проектированием, монтажом и наладкой климатических систем. Комплекс работ, которые мы выполняем, достаточно широк и зачастую мы полностью выполняем все работы не только по вентиляции, но и отоплению, кондиционированию, промышленному охлаждению и другим инженерным системам на объекте заказчика. Для того чтобы узнать какая будет цена на проект вентиляции или кондиционирования воздуха позвоните нам и наши специалисты ответят на все ваши вопросы и помогут определиться с необходимой схемой и системой климата на вашем объекте.


источники:

http://m-e-g-a.ru/ventilyatsiya/kak-proizvoditsya-raschet-avarijnoj-ventilyatsii

http://ovk-group.com/proektirovanie/ventilyaciya/avarijnaya/