Уравнение равновесия для системы параллельных сил

Уравнения равновесия плоской системы параллельных сил

Уравнения равновесия плоской системы параллельных сил

Так как параллельное расположение сил на плоскости является частным случаем их произвольного на ней расположения, то к такой системе также могут быть применены установленные в предыдущем параграфе три уравнения равновесия плоской системы сил:

Пользуясь тем, что оси проекций можно располагать в плоскости действия сил как угодно, проведем ось параллельно данным силам, а ось — перпендикулярно к ним (рис. 61).

Проекция каждой из сил на ось будет равна нулю, и потому первое из уравнении обращается в тождество при любых значениях сил. Следовательно, уравнение выполняется для системы параллельных сил, независимо от того, находится ли эта система в равновесии или нет.

Так как все данные силы параллельны оси , то сумма проекций этих сил на ось равна сумме модулей этих сил, взятых со знаком плюс, когда они направлены в одну какую-либо сторону, и со знаком минус, когда они направлены в противоположную сторону:

Для простоты будем в дальнейшем обозначать эту сумму просто

Таким образом, уравнения равновесия для плоской системы параллельных сил принимают вид

Для равновесия плоской системы параллельных сил необходимо и достаточно, чтобы порознь равнялись нулю алгебраическая сумма всех сил и сумма алгебраических величин моментов всех сил относительно любой точки, лежащей в плоскости действия сил.

Вспоминая сказанное на стр. 83 о третьей возможной форме уравнении равновесия плоской системы сил (уравнения (28)), уравнениям равновесия плоской системы параллельных сил можно придать другую форму.

Направим ось перпендикулярно параллельным силам. Тогда уравнение

обращается о тождество и отпадает.

Остаются два уравнения

причем центры и моментов должны быть выбраны так, чтобы ось была не перпендикулярна прямой , т. е. чтобы точки и не лежали на прямой, параллельной данным силам.

Для равновесия плоской системы параллельных сил необходимо и достаточно, чтобы порознь равнялись нулю суммы алгебраических величин моментов всех сил относительно каждой из двух произвольно выбранных, но не лежащих на прямой, параллельной данным силам, точек плоскости:

Пример задачи:

На двухконсольную горизонтальную балку действует пара сил с моментом , на правую консоль — равномерно распределенная нагрузка интенсивностью , а в точке левой консоли — вертикальная сосредоточенная нагрузка . Размеры балки указаны на чертеже (рис. 62). Определить реакции опор и .

Решение:

Для определения реакций опор заменим распределенную нагрузку, действующую на участке балки длиной , равнодействующей. Так как нагрузка равномерно распределена по всей длине участка, то ее равнодействующая приложена в точке , середине участка .

Реакция подвижной опоры и приложенные к балке активные силы и вертикальны. Так как пара сил может только вращать тело и не может сообщить балке горизонтального перемещения, то реакция неподвижной опоры будет направлена также вертикально.

Составляем уравнения (30) равновесия балки. Так как (стр. 74) сумма алгебраических величии моментов сил пары относительно любого центра равна моменту пары и данная пара вращает плоскость чертежа по часовой стрелке, то

Полученный результат можно проверить. Так как балка находится в равновесии, то уравнение

должно обращаться при подстановке в него значений приложенных к балке сил в тождество. Действительно,

Силы пары в это уравнение мы не подставляем, так как алгебраическая сумма их всегда равна нулю.

Пример задачи:

Балка заложена в стену на глубину Длина выступающей части балки равна Пренебрегая весом балки определить реакции стены в точках и (рис. 63), если к свободному концу балки подвешен груз .

Решение:

Как видно из рис. 63, а, приложенная к балке сила стремится повернуть се так, чтобы давление балки на стену в точке А было направлено вертикально вниз, а потому реакция стены в этой точке направлена вертикально вверх; давление же балки па стену в точке направлено вертикально вверх и, следовательно, реакция стены в точке направлена вертикально вниз.

Составляя уравнения (30) равновесия для плоской системы параллельных сил, будем иметь:

Найденным реакциям стены в месте заделки можно придать и другую (рис. 63,6), часто применяемую форму, о которой было сказано выше (стр. 85). Так как

то реакцию можно разложить на две составляющие и , направленные по линии действия силы в ту же сторону и равные по модулю

Силы и образуют пару. Момент этой пары

Этот момент, как видно из уравнения (II), равен но абсолютной величине моменту активной силы , приложенной к балке, относительно точки опоры :

Он уравновешивает вращательный эффект приложенной к балке активной силы, т. е. препятствует вращению балки. Как видно из предыдущего равенства , он не зависит от глубины заделки белки.

Реакция , равная по модулю приложенной к балке активной силе и направленная в противоположную ей сторону, делает невозможным поступательное движение балки.

Эта теория взята с полного курса лекций на странице решения задач с подробными примерами по предмету теоретическая механика:

Возможно вам будут полезны эти дополнительные темы:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

iSopromat.ru

Рассмотрим условия равновесия произвольной плоской и пространственной систем сил, включая три основные формы и частные случаи равновесия для систем параллельных и сходящихся сил:

Из основной теоремы статики следует, что любая система сил и моментов, действующих на твердое тело, может быть приведена к выбранному центру и заменена в общем случае главным вектором и главным моментом.

Если система уравновешена, то получаем условия равновесия: R=0, MO=0. Из этих условий для пространственной системы сил получается шесть уравнений равновесия, из которых могут быть определены шесть неизвестных:

Формы условий равновесия

Первая форма

Для плоской системы сил (например, в плоскости Oxy) из этих уравнений получаются только три:

причем оси и точка O, относительно которой пишется уравнение моментов, выбираются произвольно. Это первая форма уравнений равновесия.

Вторая форма

Уравнения равновесия могут быть записаны иначе:

Это вторая форма уравнений равновесия, причем ось Ox не должна быть перпендикулярна линии, проходящей через точки A и B.

Третья форма

Это третья форма уравнений равновесия, причем точки A, B и C не должны лежать на одной прямой.

Предпочтительность написания форм уравнений равновесия зависит от конкретных условий задачи и навыков решающего.

Другие условия равновесия

При действии на тело плоской системы параллельных сил одно из уравнений исчезает и остаются два уравнения (рисунок 1.26, а):



Для пространственной системы параллельных сил (рисунок 1.26, б) могут быть записаны три уравнения равновесия:

Для системы сходящихся сил (линии действия которых пересекаются в одной точке) можно написать три уравнения для пространственной системы:

и два уравнения для плоской системы:

В каждом из вышеприведенных случаев число неизвестных, находимых при решении уравнений, соответствует числу записанных уравнений равновесия.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Равновесие тела под действием пространственной системы сил

Содержание:

Для равновесия твердого тела, находящегося под действием произвольной пространственной системы сил,необходимо и достаточно, чтобы главный вектор этой системы сил и ее главный момент относительно произвольного центра О были равны нулю.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Условия равновесия тела, находящегося под действием пространственной системы произвольных сил

Поскольку любую пространственную систему произвольных сил можно свести к одной силе — главного вектора и одной пары — главного момента , приложенные к телу, то для равновесия тела необходимо и достаточно, чтобы главный вектор и главный момент одновременно равны нулю:

Причем, если = 0, то Rx = 0, Ry = 0 и Rz = 0, а если = 0, то Mx = 0, My = 0 и Mz = 0.

Проекции главного вектора на оси пространственной декартовой системы
координат равны

Проекции главного момента на эти же оси координат равны

Далее, с учетом уравнений, выражение можно окончательно представить в виде уравнений равновесия тела под действием пространственной системы произвольных сил:

На основании этих уравнений состоят конкретные уравнения равновесия тела.

Таким образом, для равновесия тела, находящегося под действием пространственной
системы произвольных сил, необходимо и достаточно, чтобы алгебраические суммы
проекций всех сил на оси пространственной декартовой системы координат и
алгебраические суммы моментов всех сел относительно этих осей равны нулю.

Условия равновесия тела, находящегося под действием пространственной системы параллельных сил

Если силы, приложенные к телу, расположенные в пространстве, но параллельны, то можно так выбрать систему координат, чтобы одна из осей (например, ось z) была параллельна данным силам (рис. 1.53). Тогда две другие оси (x, y) будут образовывать плоскость, которая будет перпендикулярной этим силам. Проекции заданных сил на оси x и y будут равны нулю. Как силы, параллельные оси, заданные силы не создают моментов относительно оси z.

Теперь, если принимать во внимание условия выше, то для пространственной системы параллельных сил три условия равновесия по данной системе выпадают, а остаются три другие. Итак, для равновесия пространственной системы параллельных сил имеем следующие уравнения равновесия:

Таким образом, для равновесия тела, находящегося под действием пространственной
системы параллельных сил, необходимо и достаточно, чтобы алгебраическая сумма
проекций всех сил на ось, которая параллельная силам, и алгебраические суммы
моментов относительно двух других осей равны нулю.

Теорема Вариньона о моменте равнодействующей силы относительно оси

Предположим, что есть тело, к которому приложена пространственная система
произвольных сил . , , . , что сведено к равнодействующей , которая приложена к телу в точке C (рис. 1.54). Приложим к точке C уравновешивающую
силу , которая по модулю равна равнодействующей силе , расположенная с ней
на одной прямой, но имеет противоположное направление.

В этом случае тело, которое находится под действием системы сил . , , . и уравновешивающей силы , будет в состоянии равновесия, а это означает, что алгебраическая сумма моментов всех этих сил относительно любой оси декартовой системы координат должна равняться нулю. Возьмем сначала ось x и для нее запишем данное условие равновесия

Найдем из этого выражения момент силы относительно оси x. Он будет равняться

Поскольку модуль силы равен модулю силы , но они имеют противоположное направление, то = –. А это значит, что mx () = –mx (). Подставим значение этого момента, получим

Такие условия можно составить в отношении двух других осей.

Таким образом, если пространственная система произвольных сил сводится к
равнодействующей, то момент равнодействующей силы относительно произвольной оси равен алгебраической сумме моментов составляющих сил относительно этой же оси.

Пример равновесия тела под действием пространственной системы произвольных сил

Есть горизонтальный вал трансмиссии (рис. 1.55), который несет два шкивы C и D ременной передачи и может вращаться в подшипниках A и B. Радиусы шкивов равны rC = 0,2 м, rD = 0,25 м. Натяжения ветвей ремня на шкиве C — горизонтальные и , причем, = 2 = 4905 Н. Натяжения ветвей паса на шкиве Dи , причем = 2 , с вертикалью они образуют угол α = 30º. Размеры вала равны: a = b = 0,5 м, с = 1 м.

Система находится в равновесии.

Определить натяжения и и реакции подшипников A и B.

Решение.

Рассмотрим равновесие вала AB со шкивами C и D. Освободим вал от связей, заменив их соответствующими реакциями. В подшипниках реакции расположены в плоскости, перпендикулярной оси вала AB. Таким образом, реакции подшипников A и B расположены соответственно в плоскости xAz и в плоскости, параллельной к ней и проходит через точку B. Неизвестный вектор каждой реакции подшипников в плоскости определяется двумя проекциями на оси x и z, как это показано на рис. 1.55. После сделанных
предположений, полученная пространственная система произвольных сил, находится в
состоянии равновесия.

Запишем на основании условий равновесия соответствующие уравнения равновесия пространственной системы произвольных сил.

Как видно из полученной системы уравнений равновесия, второе уравнение отсутствует, поскольку среди сил, приложенных к телу, нет таких, которые бы могли быть спроецированы на ось y (т. е. все силы лежат в плоскостях, перпендикулярных оси y). Однако, данная система является статически обозначенной, поскольку число неизвестных величин (t2, XA, ZA, XB, ZB) равно числу уравнений равновесия — 5.

Если подставить в данную систему уравнений числовые значения величин, заданные (учитывая, что по условию задачи = 2) и решить эти уравнения относительно неизвестных, получим следующие ответы:

Значения неизвестных величин XA и XB отрицательные, а это означает, что, фактически, эти реакции, которые показаны на рис. 1.55, имеют противоположное направление.

Для окончательного определения реакций подшипников в точках A и B необходимо добавить геометрически их составляющие. А именно

Услуги по теоретической механике:

Учебные лекции:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://isopromat.ru/teormeh/obzornyj-kurs/uravnenia-ravnovesia-sistemy-sil

http://natalibrilenova.ru/ravnovesie-tela-pod-dejstviem-prostranstvennoj-sistemyi-sil/