Уравнение разложения оксида серебра 1 на простые

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Структура оксида серебра (Ag2O), свойства, номенклатура и применение

оксид серебра неорганическое соединение, чья химическая формула Ag2О. Сила, которая объединяет его атомы, имеет полностью ионную природу; следовательно, он состоит из ионного твердого тела, в котором существует соотношение двух катионов Ag + электростатически взаимодействуя с анионом О 2- .

Оксид-анион, О 2- , это происходит в результате взаимодействия атомов серебра на поверхности с кислородом окружающей среды; очень похоже на железо и многие другие металлы. Серебряное изделие или украшение вместо того, чтобы краснеть и рассыпаться в ржавчину, становится черным, характерным для оксида серебра.

Например, на изображении выше вы можете увидеть ржавую серебряную чашку. Обратите внимание на его почерневшую поверхность, хотя он все еще сохраняет некоторый декоративный блеск; поэтому даже ржавые серебряные предметы можно считать достаточно привлекательными для декоративного использования.

Свойства оксида серебра таковы, что они не портят, на первый взгляд, первоначальную металлическую поверхность. Это сформировано при комнатной температуре простым контактом с кислородом в воздухе; и что еще интереснее, он может разлагаться при высоких температурах (выше 200 ° C).

Это означает, что если удерживать стекло изображения и применять тепло интенсивного пламени, оно восстановит свой серебристый блеск. Следовательно, его образование является термодинамически обратимым процессом..

Оксид серебра также имеет другие свойства и, помимо своей простой формулы Ag2Или это охватывает сложные структурные организации и богатое разнообразие твердых веществ. Тем не менее, Ag2Или это возможно, рядом с Ag2О3, самый представительный из оксидов серебра.

  • 1 Структура оксида серебра
    • 1.1 Изменения в количестве Валенсии
  • 2 Физические и химические свойства
    • 2.1 Молекулярный вес
    • 2.2 Внешний вид
    • 2.3 Плотность
    • 2.4 Точка плавления
    • 2,5 кпс
    • 2.6 Растворимость
    • 2.7 Ковалентный характер
    • 2.8 Разложение
  • 3 Номенклатура
    • 3.1 Валенсия I и III
    • 3.2 Систематическая номенклатура сложных оксидов серебра
  • 4 использования
  • 5 ссылок

Структура оксида серебра

Как его структура? Как уже упоминалось в начале: это ионное тело. По этой причине в его структуре не может быть ковалентных связей Ag — O и Ag = O; поскольку, если бы они были, свойства этого оксида резко изменились бы. Именно тогда ионы Ag + и O 2- в соотношении 2: 1 и испытывает электростатическое притяжение.

Структура оксида серебра определяется, следовательно, тем, как ионные силы распределяют в пространстве ионы Ag. + и O 2- .

Например, на верхнем изображении у вас есть элементарная ячейка для кубической кристаллической системы: катионы Ag + серебристо-синие сферы, а O 2- красноватые сферы.

Если вы посчитаете количество сфер, вы обнаружите, что на первый взгляд есть девять серебристо-голубых и четыре красных цвета. Однако принимаются во внимание только фрагменты сфер, содержащихся в кубе; считая их, как доли от общего количества сфер, нужно соблюдать соотношение 2: 1 для Ag2О.

Повторяя структурную единицу тетраэдра AgO4 в окружении четырех других Ag + , все черное тело построено (устранение пробелов или неровностей, которые могут иметь эти кристаллические структуры).

Изменения в количестве Валенсии

Сосредоточение теперь не на тетраэдре AgO4 но в линии AgOAg (обратите внимание на вершины верхнего куба) будет показано, что твердое вещество оксида серебра состоит, с другой точки зрения, из множества ионных слоев, расположенных линейно (хотя и наклонно). Все это в результате «молекулярной» геометрии вокруг Ag + .

Вышесказанное было подтверждено несколькими исследованиями его ионной структуры.

Серебро работает преимущественно с валентностью +1, поскольку при потере электрона его электронная конфигурация равна [Kr] 4d. 10 , который очень стабилен. Другие валентности, такие как Ag 2+ и Ag 3+ они менее стабильны, так как теряют электроны от орбиталей, почти полностью заполненных.

Ag ион 3+ , однако он относительно менее нестабилен по сравнению с Ag 2+ . На самом деле, он может сосуществовать в компании Ag + Химически обогащает структуру.

Его электронная конфигурация [Kr] 4d 8 , с неспаренными электронами таким образом, что дает ему некоторую стабильность.

В отличие от линейной геометрии вокруг ионов Ag + , было обнаружено, что это из ионов Ag 3+ Это квадратная квартира. Следовательно, оксид серебра с ионами Ag 3+ будет состоять из слоев, состоящих из квадратов AgO4 (не тетраэдры), электростатически связанные линиями AgOAg; Таков случай Ag4О4 или Ag2O ∙ Ag2О3 с моноклинной структурой.

Физико-химические свойства

Если вы поцарапаете поверхность серебряного стакана основного изображения, вы получите твердое тело, которое не только черного цвета, но также имеет коричневые или коричневые тона (верхнее изображение). Некоторые из его физических и химических свойств, о которых сообщают моменты, следующие:

Молекулярный вес

231 735 г / моль

внешний вид

Твердый черный коричневый в виде порошка (обратите внимание, что, несмотря на то, что он является ионным твердым веществом, он не имеет кристаллического вида). Он не имеет запаха и смешан с водой, придает ему металлический привкус

плотность

Точка плавления

277-300 ° С Конечно, он плавится в твердое серебро; то есть он, вероятно, разрушается до образования жидкого оксида.

КПС

1,52 ∙ 10 -8 в воде при 20 ° С Поэтому это соединение плохо растворимое в воде.

растворимость

Если вы внимательно посмотрите на изображение его структуры, вы обнаружите, что сферы Ag 2+ и O 2- Они не расходятся почти по размеру. В результате только небольшие молекулы могут проникать внутрь кристаллической решетки, делая ее нерастворимой почти во всех растворителях; за исключением тех, где он реагирует, таких как основания и кислоты.

Ковалентный персонаж

Хотя неоднократно говорилось, что оксид серебра является ионным соединением, некоторые свойства, такие как его низкая температура плавления, противоречат этому утверждению..

Конечно, рассмотрение ковалентного характера не нарушает того, что объясняется для его структуры, было бы достаточно, чтобы добавить его к структуре Ag2Или модель сфер и стержней для обозначения ковалентных связей.

Также тетраэдры и квадратные плоскости AgO4, как и линии AgOAg, они будут связаны ковалентными (или ковалентными ионными) связями.

Имея это в виду, Ag2Или это на самом деле полимер. Тем не менее, рекомендуется рассматривать его как ионное твердое вещество с ковалентным характером (характер связи до сих пор остается проблемой).

разложение

Сначала было упомянуто, что его образование является термодинамически обратимым, поэтому он поглощает тепло, чтобы вернуться в свое металлическое состояние. Все это можно выразить двумя химическими уравнениями для таких реакций:

Где Q представляет тепло в уравнении. Это объясняет, почему огонь, сжигающий поверхность ржавой серебряной чашки, возвращает свой серебристый блеск.

Поэтому трудно предположить, что существует Ag2O (l), так как оно мгновенно разлагается под воздействием тепла; если только давление не является слишком высоким для получения указанной коричневой черной жидкости.

номенклатура

Когда появилась возможность введения ионов Ag 2+ и Ag 3+ помимо общего и преобладающего Ag + , термин «оксид серебра» начинает казаться недостаточным для обозначения Ag2О.

Это потому, что ион Ag + является более распространенным, чем другие, поэтому Аг2Или как единственный оксид; что совсем не правильно.

Если вы считаете, Ag 2+ так как практически не существует, учитывая его нестабильность, то будут присутствовать только ионы с валентностями +1 и +3; то есть Ag (I) и Ag (III).

Валенсия I и III

Поскольку Ag (I) является наименее валентным, его называют путем добавления суффикса -oso к его имени. Argentum. Итак, Аг2Или это: окись аргентозо или, согласно систематической номенклатуре, окись диплата.

Если Ag (III) полностью игнорируется, то его традиционная номенклатура должна быть: оксид серебра вместо оксида аргентина.

С другой стороны, Ag (III), являющийся большей валентностью, добавляет к своему имени суффикс -ico. Итак, Аг2О3 это: оксид серебра (2 Ag ионы) 3+ с тремя O 2- ). Кроме того, его название в соответствии с систематической номенклатурой будет: диплат триоксид.

Если структура Ag наблюдается2О3, можно предположить, что это продукт окисления озоном, ИЛИ3, вместо кислорода. Следовательно, его ковалентный характер должен быть больше, поскольку он представляет собой ковалентное соединение со связями Ag-O-O-O-Ag или Ag-O.3-Ag.

Систематическая номенклатура сложных оксидов серебра

AgO, также написано как Ag4О4 или Ag2O ∙ Ag2О3, это оксид серебра (I, III), так как он имеет обе валентности +1 и +3. Его название в соответствии с систематической номенклатурой будет: тетраплат тетраоксид.

Эта номенклатура очень помогает, когда речь идет о других стехиометрически более сложных оксидах серебра. Например, предположим, что два твердых вещества 2Ag2O ∙ Ag2О3 и Ag2O ∙ 3Ag2О3.

Написание первого более подходящим способом будет следующим: Ag6О5 (считая и добавляя атомы Ag и O). Его имя тогда будет гексаплатной пятиокисью. Обратите внимание, что этот оксид имеет состав серебра менее богатый, чем Ag2О (6: 5

Реакции разложения

При выполнении различных заданий ЕГЭ по химии (например, задачи 34 или задания 32 «мысленный эксперимент») могут пригодиться знания о том, какие вещества при нагревании разлагаются и как они разлагаются.

Рассмотрим термическую устойчивость основных классов неорганических веществ. Я не указываю в условиях температуру протекания процессов, так как в ЕГЭ по химии такая информация, как правило, не встречается. Если возможны различные варианты разложения веществ, я привожу наиболее вероятные, на мой взгляд, реакции.

Разложение оксидов

При нагревании разлагаются оксиды тяжелых металлов:

2HgO = 2Hg + O2

Разложение гидроксидов

Как правило, при нагревании разлагаются нерастворимые гидроксиды. Исключением является гидроксид лития, он растворим, но при нагревании в твердом виде разлагается на оксид и воду:

2LiOH = Li2O + H2O

Гидроксиды других щелочных металлов при нагревании не разлагаются.

Гидроксиды серебра (I) и меди (I) неустойчивы:

2AgOH = Ag2O + H2O

2CuOH = Cu2O + H2O

Гидроксиды большинства металлов при нагревании разлагаются на оксид и воду.

В инертной атмосфере (в отсутствии кислорода воздуха) гидроксиды хрома (III) марганца (II) и железа (II) распадаются на оксид и воду:

Большинство остальных нерастворимых гидроксидов металлов также при нагревании разлагаются:

Разложение кислот

При нагревании разлагаются нерастворимые кислоты.

Например , кремниевая кислота:

Некоторые кислоты неустойчивы и подвергаются разложению в момент образования. Большая часть молекул сернистой кислоты и угольной кислоты распадаются на оксид и воду в момент образования:

В ЕГЭ по химии лучше эти кислоты записывать в виде оксида и воды.

Например , при действии водного раствора углекислого газа на карбонат калия в качестве реагента мы указываем не угольную кислоту, а оксид углерода (IV) и воду, но подразумеваем угольную кислоту при этом:

Азотистая кислота на холоде или при комнатной температуре частично распадается уже в водном растворе, реакция протекает обратимо:

При нагревании выше 100 о С продукты распада несколько отличаются:

Азотная кислота под действием света или при нагревании частично обратимо разлагается:

Разложение солей

Разложение хлоридов

Хлориды щелочных, щелочноземельных металлов, магния, цинка, алюминия и хрома при нагревании не разлагаются.

Хлорид серебра (I) разлагается под действием света:

2AgCl → Ag + Cl2

Хлорид аммония при нагревании выше 340 о С разлагается:

Разложение нитратов

Нитраты щелочных металлов при нагревании разлагаются до нитрита металла и кислорода.

Например , разложение нитрата калия:

Видеоопыт разложения нитрата калия можно посмотреть здесь.

Нитраты магния, стронция, кальция и бария разлагаются до нитрита и кислорода при нагревании до 500 о С:

При более сильном нагревании (выше 500 о С) нитраты магния, стронция, кальция и бария разлагаются до оксида металла, оксида азота (IV) и кислорода:

Нитраты металлов, расположенных в ряду напряжений после магния и до меди (включительно) + нитрат лития разлагаются при нагревании до оксида металла, диоксида азота и кислорода:

Нитраты серебра и ртути разлагаются при нагревании до металла, диоксида азота и кислорода:

Нитрат аммония разлагается при небольшом нагревании до 270 о С оксида азота (I) и воды:

При более высокой температуре образуются азот и кислород:

Разложение карбонатов и гидрокарбонатов

Карбонаты натрия и калия плавятся при нагревании.

Карбонаты лития, щелочноземельных металлов и магния разлагаются на оксид металла и углекислый газ:

Карбонат аммония разлагается при 30 о С на гидрокарбонат аммония и аммиак:

Гидрокарбонат аммония при дальнейшем нагревании разлагается на аммиак, углекислый газ и воду:

Гидрокарбонаты натрия и калия при нагревании разлагаются на карбонаты, углекислый газ и воду:

Гидрокарбонат кальция при нагревании до 100 о С разлагается на карбонат, углекислый газ и воду:

При нагревании до 1200 о С образуются оксиды:

Разложение сульфатов

Сульфаты щелочных металлов при нагревании не разлагаются.

Сульфаты алюминия, щелочноземельных металлов, меди, железа и магния разлагаются до оксида металла, диоксида серы и кислорода:

Сульфаты серебра и ртути разлагаются до металла, диоксида серы и кислорода:

Разложение фосфатов, гидрофосфатов и дигидрофосфатов

Эти реакции, скорее всего, в ЕГЭ по химии не встретятся! Гидрофосфаты щелочных и щелочноземельных металлов разлагаются до пирофосфатов:

Ортофосфаты при нагревании не разлагаются (кроме фосфата аммония).

Разложение сульфитов

Сульфиты щелочных металлов разлагаются до сульфидов и сульфатов:

Разложение солей аммония

Некоторые соли аммония, не содержащие анионы кислот-сильных окислителей, обратимо разлагаются при нагревании без изменения степени окисления. Это хлорид, бромид, йодид, дигидрофосфат аммония:

Cоли аммония, образованные кислотами-окислителями, при нагревании также разлагаются. При этом протекает окислительно-восстановительная реакция. Это дихромат аммония, нитрат и нитрит аммония:

Видеоопыт разложения нитрита аммония можно посмотреть здесь.

Разложение перманганата калия

Разложение хлората и перхлората калия

Хлорат калия при нагревании разлагается до перхлората и хлорида:

4KClO3 → 3KClO4 + KCl

При нагревании в присутствии катализатора (оксид марганца (IV)) образуется хлорид калия и кислород:

2KClO3 → 2KCl + 3O2

Перхлорат калия при нагревании разлагается до хлорида и кислорода:


источники:

http://ru.thpanorama.com/articles/qumica/xido-de-plata-ag2o-estructura-propiedades-nomenclatura-y-usos.html

http://chemege.ru/reakcii-razlozheniya/