Уравнение размера размерности физической величины

Применение размерности для проверки правильности решения физических задач

Разделы: Физика

Цели:

  • шире использовать полученные теоретические знания по физике;
  • вооружить учащихся большим набором способов решения задач.

1. Понятие размерности

Для начала упорядочим некоторые понятия, с которыми мы имели дело раньше и с теми, которые встретятся нам в будущем. К таким физическим понятиям относятся: наименование, название физической величины, в выбранной системе единиц, размерность, обозначение и определяющее уравнение.
Разберём это на некоторых примерах взятых из раздела «Механика» и знакомых нам. Для краткости сведём всё это в таблицу.

Наименование

S

S = a 3

кв. метр

L 2

V

V = а 3

куб. метр

L 3

V

V = S/t

м/с; м с –1

метр в сек.

L T –1

а

а =

м/с 2 ; м с –2

метр в секунду
за секунду

L T –2

кг/м 3 ; кг м –3

кг на куб. метр

M L –3

Название физ. величиныОбозначениеОпределяющее уравнениеРазмерность
Площадь
Объём
Скорость
Ускорение
Плотность

Это простые и часто встречающиеся понятия, причём название физической величины вытекает из определяющего её уравнения. Но ряд физических величин имеют «клички». Название величины не следует прямо, как прежде, из определяющего уравнения.

Наименование величины – сила. Название единицы измерения – Ньютон. Вспомним материал 7-го класса. Что такое Ньютон? Это такая сила, которая за 1 секунду изменяет скорость тела массой 1 кг на 1 метр в секунду. Примером одной из сил является вес тела. Мы знаем, что вес тела равен Р = mg, где m – масса тела , а g – ускорение свободного падения.
Из физики 8-го класса мы знаем, что ускорение измеряется в м/с 2 . Значит, если речь идёт о весе тела Р, то он равен произведению массы тела на ускорение. Отсюда можно сделать вывод, что и любая другая сила F равна произведению массы тела на полученное в результате действия силы ускорение, т.е. F = ma.

Обратим внимание на то, что, если масса тела равна 1 кг и полученное ускорение равно 1 м/с 2 , то и сила будет равна единице силы, то есть 1-му Ньютону. Тогда размерность Ньютона будет
[ F ] = кг = кг м /с 2 = M L T –2 . Заметим, что определяющим уравнением будет уравнение F = ma. Обратите внимание, что название единицы силы не кг м/с 2 , а Ньютон – «кличка». Просто громоздкое наименование единицы заменили на «Ньютон» в честь знаменитого английского учёного Ньютона. Таких имён «кличек» которые носят единицы измерения физических величин много. В механике это Джоуль, Герц, Ватт.
Каждой такой единице присуща ей размерность, которая показывает, из каких основных единиц системы СИ «приготовлена», «сделана» такая единица, в какой степени входят в состав этой величины основные единицы и где они находятся в числителе или в знаменателе.
Что такое определяющее уравнение? Это уравнение, которое следует из определения физической величины.

1. Скорость – это физическая величина равная отношению пути, пройденного телом, ко времени за которое этот путь пройден. Отсюда следует определяющее уравнение V = S/t.
2. Работа – это физическая величина равная произведению силы, приложенной к телу на путь, который прошло тело под действием этой силы. Отсюда следует определяющее уравнение: A = F S.
До введения интернациональной системы единиц (СИ), существовал несколько систем единиц.
Так в одной из них основными единицами были: единица массы – грамм; единица длины – сантиметр; единица времени – секунда. Эта система единиц называлась СГС.
Были и другие системы единиц. Но масса есть масса в любой системе. Будь она в кг, или в г, или в мг. Поэтому, независимо от выбранной системы единиц, принято размерность выражать в символах. Масса – М. Длина – L. Время – Т.

В таблице выше соответствующая колонка называется просто размерность.

Задачи для самостоятельного решения.

1. Определить размерность Джоуля. Определяющее уравнение A = F S
2. Определить размерность Ватта. Определяющее уравнение N = A / t
3. Определить размерность Герца. Определяющее уравнение = 1 / Т
4. Определить размерность Паскаля. Определяющее уравнение р = F/S
5. Определить размерность момента силы. Определяющее уравнение М = F L.

2. Проверка правильности решения задач по размерности

«Видкиль воно взялось и на щоб воно сдалось» Украинская пословица.

Откуда взялась размерность мы рассмотрели. Рассмотрим где, и как она может быть применена и её особенности.
Рассмотрим решение нескольких задач:
1. Определить расстояние между Землёй и Солнцем, если луч света, двигаясь со скоростью 3 х 108 м/с, проходит это расстояние примерно за 8,5 минут?
2. Какое расстояние по прямой может пройти ракета за 1 минуту, двигаясь от места старта с ускорением 20 м/с 2 ?
3. Автомобиль, двигаясь со скоростью 54 км/ч, пошел на обгон и в течение 10 секунд двигался с ускорением 2 м/с 2 . Какой путь прошел автомобиль за это время?
4. Автомобиль, двигаясь со скоростью 54 км/ч, перед поворотом в течение 10 секунд двигался равнозамедленно с ускорением – 2 м/с 2 . Какой путь прошел автомобиль за это время?

Проанализируем решение этих задач.

1. Что общего было в этих задачах? (Определялся путь S)
2. В чём различие в этих задачах? (В каждой задаче описывается различное движение, а значит, применяются различные уравнения для определения пути)

То есть различие в том, что одна и та же величина (путь) определяется через различные величины. В № 1 через V и t. В № 2 через а и t. В № 3 и № 4 через Vо, a, t.
Эти величины имеют различные размерности, а в результате произведенных действий получается во всех случаях одна и та же размерность – метр.
Произведём, не используя модулей этих величин, предлагаемые действия только с размерностями.

1. S = V t = 2. S = . 3.4. S = V0t ± = ± =L±L= L

Отсюда следует закономерность: В правильно составленном уравнении, размерность правой его части равна размерности его левой части.
Эту закономерность можно применить для проверки правильности решения задач.
Допустим, задачу №3 решили с ошибкой (она очень часто встречается), записав
уравнение так S = Vо + at 2 /2 , тогда S = 15 + 2 х 10 2 /2 = 65 (м). Так как правильный ответ неизвестен, то неясно, как проверить правильность решения, и найти причину ошибки.
То ли ошибка в вычислениях, то ли в преобразованиях, то ли в неправильном написании правильно выбранного уравнения?
Проверяя правильность решения по наименованию можно найти причину ошибки.
Как это сделать? Вместо модулей величин подставить размерности величин и сравнить размерности левой и правой части уравнения. (использовать, указанную выше, закономерность )

Отсюда следует, L =/= 1 + Т. Задача решена неверно. Где ошибка? В правой части уравнение представляет двучлен. Одна его часть имеет размерность L, а другая L/T. Как из этого выражения L/T получить L? Нужно умножить его на Т. Тогда получим размерность первого члена L. Первый член и второй член правой части уравнения будут иметь размерность L, то есть L + L = L. Левая и правая части будут иметь одинаковую размерность. Значит, первый член правой части уравнения должен иметь вид не Vо, а Vо t.
Теперь, предположим, решающий допустил другую ошибку. В уравнении S = Vоt +at 2 /2 вместо знака «+» поставил знак «–». Поможет ли здесь метод размерности указать на ошибку? Решение задачи № 4 говорит о том, что задача решена правильно. L = L – L = L, но модуль величины другой.
Отсюда следует второй вывод: метод размерностей может подсказать ошибочность физического направления решения, но не может подсказать ошибочность математического действия.
Решим несколько задач по кинематике и сделаем проверку их правильности решения, применив метод размерности.

Задача № 1.

За время равное 2 с, тело, двигаясь прямолинейно и равноускоренно, прошло путь 20 м. Его скорость при этом увеличилась в 3 раза. Определить ускорение тела.

Сделаем проверку решения методом размерности.
Размерности левой и правой части уравнения совпадают, значит, задача решена правильно.

Задача №2.

Тело, двигаясь от остановки равноускоренно, за первые 5 секунд движения прошло путь 10 м. Какой путь пройдёт это тело за 10 секунд от начала движения?

Задача № 3. Тело, двигаясь равноускоренно, за 5 секунд движения прошло путь 100 м , а за 10 сек. – 300 м. Определить начальную скорость движения тела.

Мы проделали громоздкие преобразования. Не допустили ли мы ошибку? Воспользуемся знанием закономерности размерности и проверим свою работу.
L T–1 = Следовательно, задача решена верно.
Подставим числовое значение входящих величин и получим числовой ответ задачи.

V0 = (м/с)

Задача №4. Во сколько раз скорость пули при вылете её из ствола винтовки больше скорости этой пули при прохождении ею 1/3 ствола?

Уравнение размера размерности физической величины

Итак, начнем с размерностей. Они делятся на основные и производные.

Основные — это метр (м), секунда (с), килограмм (кг), ампер ( A ), кельвин (К) (это градус температуры, и он не совсем основная величина. но для нас сейчас это не важно и за подробностями «милости просим» в Википедию). Есть еще шестая основная величина Кандела (Кд) — единица освещенности.

Сразу оговоримся, раньше официально в качестве основной единицы использовался Кулон (Кл), а не Ампер (А). Теперь же Кулон получается из Ампера, который определяется непосредственно по силе взаимодействия двух определенных проводников с током именно, как сила взаимодействия (притяжения или отталкивания) проводников с током.

Все очень логично – сила тока 1 Ампер есть такой ток (т.е. количество переносимого в единицу времени (с) заряда (Кл) в проводниках), который вызывает силу взаимодействия величиной 1 Ньютон между двумя проводниками с током длиной в 1 метр каждый, которые находятся на расстоянии 1 метр.

Видите, как все взаимосвязано!

Считается, что основные величины размерностей – это некие эталонные величины, которые мы находим экспериментально. Причем в этих экспериментах каждый раз получаются одинаковые значения физических величин при одинаковых условиях измерений.

Например, метр – это, по сути, металлический стержень, который хранится во Франции в специальном институте («Международное бюро мер и весов» — постоянно действующая организация со штаб-квартирой, расположенной в городе Севр недалеко от Парижа) при определенной температуре (и других постоянных условиях), с которым мы должны сравнивать и измерять все остальные «метры».

Секунда, это примерно (1 / 86400) одна восьмидесятишеститысяччетырехсотая средних астрономических суток. И к тому же эти сутки меняются со временем, правда очень медленно. Но зато у нас есть всемирная служба точного времени, которая сообщает нам, когда заканчивается один час и начинается другой.

Метр, что интересно, — это и единица коэффициента трения качения, и единица длины волны излучения, и длины свободного пробега, и оптической длины пути, и фокусного расстояния, и комптоновской длины волны, и длины волны де Бройля и многих других физических величин, имеющих размерность длины.

По определению, метр равен расстоянию, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды. Такое определение метра (в терминах времени и скорости света) было принято на XVII Генеральной конференции по мерам и весам в 1983 году.

С практической точки зрения, для решения физических задач, эти подробности не слишком важны. Важно, что каждой физической величине соответствует своя размерность. И что эти величины с размерностями можно складывать или вычитать, только если они одинаковые.

Но их можно также умножать и делить. И при этом образуются новые физические величины (новые размерности).

Сейчас мы с вами займемся конструированием физических величин.

Возьмем метр и разделим его на секунду — получится м/с — скорость.

Возьмем метр и умножим его на метр — получим м 2 — площадь.

Возьмем м2 и умножим его снова на метр — получим м 3 — объем.

Дальше можете продолжить сами!

Берем кг и умножаем его на кг — получаем кг 2 — квадратный килограмм. Круто!

Вопрос: Может быть квадратный килограмм?

Ответ: Может. Но только физического смысла в этом нет никакого.

Ниже приведена таблица размерностей с названиями физических величин.

Таблица размерностей физических величин.

Основная размерность
МАССА

Основная размерность
ДЛИНА

Основная размерность
ВРЕМЯ

Основная размерность
СИЛА ТОКА

Основная размерность
ТЕРМО-
ДИНАМИ-
ЧЕСКАЯ ТЕМПЕРАТУРА

Основная размерность
Количество вещества

Основная размерность
Сила света

Метрология

Размерности измеряемых величин, шкалы и отсчеты

Понятие о размерности измеряемых величин

Размерность измеряемой величины является качественной ее характеристикой и обозначается символом dim , происходящим от слова dimension (измерение, размах, величина, степень, мера) .
Размерность основных физических величин обозначается соответствующими заглавными буквами.
Например, для длины, массы и времени:

dim l = L; dim m = M; dim t = T .

При определении размерности производных величин руководствуются следующими правилами:

1. Размерности левой и правой частей уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.

2. Алгебра размерностей мультипликативна , т. е. состоит из одного единственного действия — умножения.

3. Размерность произведения нескольких величин равна произведению их размерностей . Так, если зависимость между значениями величин Q , А , В , С имеет вид Q = А×В×С , то

dim Q = dim A×dim B×dim C .

4. Размерность частного при делении одной величины на другую равна отношению их размерностей , т. е. если Q = А/В , то

dim Q = dim A/dim B .

5. Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени.
Так, если Q = А n , то

Например, если скорость определять по формуле V = l / t , то dim V = dim l/dim t = L/Т = LТ -1 .
Если сила по второму закону Ньютона F = mа , где а = V/ t — ускорение тела, то

dim F = dim m×dim а = МL/Т 2 = MLТ -2 .

Итак, всегда можно выразить размерность производной физической величины через размерности основных физических величин с помощью стеᴨенного одночлена:

где:
L, М, Т. — размерности соответствующих основных физических величин;
a,b ,q . — показатели размерности. Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем.

Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость) , и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений) .
В гуманитарных науках, искусстве, спорте, квалиметрии, где номенклатура основных величин не определена, теория размерностей не находит пока эффективного применения.

Размер измеряемой величины является количественной ее характеристикой. Получение информации о размере физической или нефизической величины является содержанием любого измерения.

Измерительные шкалы и их типы

В теории измерений принято, в основном, различать пять типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные.

Шкалы наименований характеризуются только отношением эквивалентности (равенства) . Примером такой шкалы является распространённая классификация (оценка) цвета по наименованиям (атласы цветов до 1000 наименований) .

Шкалы порядка — это расположенные в порядке возрастания или убывания размеры измеряемой величины. Расстановка размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для облегчения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных) . Недостатком реперных шкал является неопределённость интервалов между реперными точками.
В связи с этим баллы нельзя складывать, вычислять, перемножать, делить и т.п.
Примерами таких шкал являются: знания студентов по баллам, землетрясения по 12-балльной системе, сила ветра по шкале Бофорта, чувствительность плёнок, твёрдость по шкале Мооса и т.д.

Шкалы разностей (интервалов) отличаются от шкал порядка тем, что по шкале интервалов можно уже судить не только о том, что размер больше другого, но и на сколько больше. По шкале интервалов возможны такие математические действия, как сложение и вычитание.
Характерным примером является шкала интервалов времени, поскольку интервалы времени можно суммировать или вычитать, но складывать, например, даты каких-либо событий не имеет смысла.

Шкалы отношений описывают свойства, к множеству самих количественных проявлений котоҏыҳ применимы отношения эквивалентности, порядка и суммирования, а следовательно, вычитания и умножения. В шкале отношений существует нулевое значение показателя свойства. Примером является шкала длин.
Любое измерение по шкале отношений заключается в сравнении неизвестного размера с известным и выражении первого через второй в кратном или дольном отношении.

Абсолютные шкалы обладают всеми признаками шкал отношений, но в них дополнительно существует естественное однозначное определение единицы измерения. Такие шкалы соответствуют относительным величинам (отношения одноимённых физических величин, описываемых шкалами отношений) . К таким величинам относятся коэффициент усиления, ослабления и т. п. Среди этих шкал существуют шкалы, значения которых находятся в пределах от 0 до 1 (коэффициент полезного действия, отражения и т.п.) .

Измерение (сравнение неизвестного с известным) происходит под влиянием множества случайных и неслучайных, аддитивных (прибавляемых) и мультипликативных (умножаемых) факторов, точный учёт которых невозможен, а результат совместного воздействия непредсказуем.

Основной постулат метрологии — отсчёт — является случайным числом.
Математическая модель измерения по шкале сравнения имеет вид:

где:
q — результат измерения (числовое значение величины Q );
Q — значение измеряемой величины;
[Q] — единица данной физической величины;
V — масса тары (например, при взвешивании);
U — слагаемое от аддитивного воздействия.

Из приведенной формулы можно выразить значение измеряемой величины Q :

При однократном измерении величины ее значение подсчитывается с учетом поправки:

где:
qi[Q] — результат однократного измерения;
i = — U[Q] — V — суммарная поправка.

Значение измеряемой величины при многократном измерении может быть определено из соотношения:


источники:

http://www.sites.google.com/site/fizikaetoprosto2016/2-razmernosti-velicin-metod-razmernostej

http://k-a-t.ru/metrologia/metrologia_4/index.shtml