Уравнение реакции для которой энтропия увеличивается имеет вид

Энтропия. Энергия Гиббса

Понятие энтропии

Абсолютная энтропия веществ и изменение энтропии в процессах

Стандартная энтропия

Стандартная энтропия образования

Энергия Гиббса

Стандартная энергия Гиббса образования

Энтальпийный, энтропийный фактор и направление процесса

Примеры решения задач

Задачи для самостоятельного решения

Понятие энтропии

Энтропия S – функция состояния системы. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

Абсолютная энтропия веществ и изменение энтропии в процессах

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

где S(прод.) и S(исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы ΔV в результате процесса. Знак ΔV определяется по изменению количества вещества газообразных реагентов Δnг. Так, для реакции

(Δnг = 1) ΔV > 0, значит, ΔS > 0.

Стандартная энтропия

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о ) увеличивается при повышении температуры.

Стандартная энтропия образования

Стандартная энтропия образования ΔS о f,298 (или ΔS о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса

Энергия Гиббса G – функция состояния системы. Энергия Гиббса равна:

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение δG в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса (ΔG

Стандартная энергия Гиббса образования

Стандартная энергия Гиббса образования δG о f,298 (или δG о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, δG о f,298 = 0.

Энтальпийный, энтропийный фактор и направление процесса

Проанализируем уравнение ΔG о Т = ΔН о Т — ΔТS о Т. При низких температурах ТΔS о Т мало. Поэтому знак ΔG о Т определяется в основном значением ΔН о Т (энтальпийный фактор). При высоких температурах ТΔS о Т – большая величина, знак Δ G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (ΔН о Т) и энтропийного (ТΔS о Т) факторов существует четыре варианта процессов.

      1. Если ΔН о Т о Т > 0, то ΔG о Т
      2. Если ΔН о Т > 0, ΔS о Т о Т > 0 всегда (процесс не протекает ни при какой температуре).
      3. Если ΔН о Т о Т о Т о /ΔS о (процесс идет при низкой температуре за счет энтальпийного фактора).
      4. Если ΔН о Т > 0, ΔS о Т > 0, то ΔG о Т ΔН о / ΔS о (процесс идет при высокой температуре за счет энтропийного фактора).

Примеры решения задач

Задача 1. Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

Объяснить знак и величину ΔS о .

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоNH3(г)O2(г)(г)H2O(ж)
S о 298,

Дж/(моль·К)

192,66205,04210,6469,95

В данной реакции ΔV o х.р.,298

Задача 2. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH4NO3(к). Отличается ли стандартная энтропия образования NH4NO3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH4NO3 отвечает изменение энтропии в процессе:

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2(г)H2(г)O2(г)NH4NO3(к)
S о 298,

Дж/(моль·К)

191,50130,52205,04151,04

Стандартная энтропия образования NH4NO3(к), равная — 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298(NH4NO3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины ΔS 0 f,298, как правило, знакопеременны.

Задача 3. Изменение энергии Гиббса реакции:

равно δG о 298= –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции ΔS о о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку ТΔS о

Задача 4. Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоС4Н10(г)С2Н4(г)Н2(г)
ΔG о f,298× , кДж/моль— 17,1968,140
S о 298, Дж/(моль·К)310,12219,45130,52

ΔG о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

Поскольку ΔS о х.р.,298 > 0, то при температуре Т>ΔН о /ΔS о величина ΔG о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Задача 5. Пользуясь справочными данными по ΔG о f,298 и S о 298, определите ΔH о 298 реакции:

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2O(г)H2(г)N2H4(г)H2O(ж)
ΔG о f,298, кДж/моль104,120159,10-237,23
S о 298, Дж/(моль·К)219,83130,52238,5069,95

ΔG о 298 = ΔН о 298 – ТΔS о 298. Подставляя в это уравнение величины ΔН о 298 и ТΔS о 298, получаем:

ΔН о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.

Следует подчеркнуть, что поскольку ΔS о 298 выражена в Дж/(моль× К), то при проведении расчетов ΔG 0 298 необходимо также выразить в Дж или величину ΔS 0 298 представить в кДж/(мольK).

Задачи для самостоятельного решения

1. Используя справочные данные, определите стандартную энтропию образования ΔS о f,298 NaHCO3(к).

2. Выберите процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO2(г):

Уравнение реакции для которой энтропия увеличивается имеет вид

Некоторые формулировки второго закона термодинамики

1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропии всех тел, которые принимают участие в этом процессе (М. Планк).

5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

7. Энтропия-это стрелка времени* (А. Эддингтон).

Изменения энтропии в химических реакциях

Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом S» и имеет размерность ДжК-1 моль-1. В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре 25°С. Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

Твердое вещество= Жидкость= Газ

Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (О К) равна нулю.

Таблица 5.12. Стандартные молярные энтропии S°(298 К) (Дж/(К моль) )

Изменение стандартной молярной энтропии в химической реакции определяется уравнением

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов-только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается — нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?

Вычисление термодинамических величин данной химической реакции

Энтропия реакции

Задача 12.
Уравнение реакции имеет вид: N2O(r) + NH3(r) ⇔ N2(r)+H2O(r). Вычислить изменение энтропии данной химической реакции [(∆S°(х.р.)]
Решение:
3N2O(r) + 2NH3(r) ⇔ 4N2(r) + 3H2O(r).

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

∆S°(298)[NH3(г)] = 192,66 Дж/(моль . К);
∆S°(298)[N2(г)] = 191,50 Дж/(моль . К);
∆S°(298)[N2О(г)] = 219,83 Дж/(моль . К);
∆S°(298)2О(г)] = 188,72 Дж/(моль . К).

∆S°(х. р.) = 4∆S°(298)[N2(г)] +3∆S°(298)[H2O(г)] — 3∆S°(298)[N2О(г)] — 2∆S°(298)[NH3(г)] =
= [(4 . 191,50) + (3 . 188,72)] — [(3 . 219,83) + (2 . 192,66)] = 380,22 — 412,49 = 287,35 Дж/(моль . К).

Таким образом, ∆S° > 0.

Вывод:
Увеличение энтропии объясняется тем, что система в результате реакции переходит в менее устойчивое состояние, так как из 5 объёмов газообразных веществ происходит образование 7 объёмов газообразных веществ, т. е. объём системы увеличивается, система становится менее устойчивой. ∆S° > 0.

Ответ: ∆S° = 287,35 Дж/(моль . К).

Энтальпия реакции

Задача 13.
Почему реакция имеет такую схему C + O2 = СО2; ∆Н = 402,24 кДж? Объясните, пожалуйста, откуда берётся это число «402,24кдж». Вычислите, сколько сгорело угля, если при этом выделилось 33 520 кДж?
Решение:
В данном случае 402,24 кДж — это не просто тепловой эффект этой химической реакции, но еще и теплота образования оксида углерода СО2 из элементов. Действительно, в этой реакции оксид углерода СО2 образуется именно из составляющих его элементов — углерода и кислорода а не каким-нибудь другим способом. Таким образом, при образовании СО2 из одного атома углерода (С) и двух атомов кислорода (О) выделяется 402,24 кДж. Стандартные энтальпии образования веществ приведены в специальных таблицах в справочниках по химии. Вообще, в справочниках энтальпия образования СО2(г) равна -393,51 кДж/моль [∆H°(CO2) = -393,51 кДж/моль].

Массу сгоревшего угля находим из уравнения реакции, получим:

х г 33520 кДж
C + O2 = СО2; ∆Н = 402,24 кДж
12 г x кДж

12 : х = 402,24 : 33520;
х = (12 . 33520)/402,24 = 1000 г или 1 кг.

Ответ: m(C) = 1 кг.


источники:

http://www.himikatus.ru/art/ch-act/0246.php

http://buzani.ru/zadachi/fizicheskaya-khimiya/1581-izmenenie-entropii-khimicheskoj-reaktsii-zadachi-12-13