Уравнение реакции электролиза хлорида натрия

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6dfbebc0b852169f • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Электролиз растворов
и расплавов солей (2 ч)

Цели первого урока: научить писать схемы электролиза растворов и расплавов солей и применять полученные знания для решения расчетных задач; продолжить формирование навыков работы с учебником, тестовыми материалами; обсудить применение электролиза в народном хозяйстве.

П л а н п е р в о г о у р о к а

1. Повторение изученных способов получения металлов.

2. Объяснение нового материала.

3. Решение задач из учебника Г.Е.Рудзитиса, Ф.Г.Фельдмана «Химия-9» (М.: Просвещение, 2002), с. 120, № 1, 2.

4. Проверка усвоения знаний на тестовых заданиях.

5. Сообщение о применении электролиза.

Цели первого урока: научить писать схемы электролиза растворов и расплавов солей и применять полученные знания для решения расчетных задач; продолжить формирование навыков работы с учебником, тестовыми материалами; обсудить применение электролиза в народном хозяйстве.

ХОД ПЕРВОГО УРОКА

Повторение изученных способов получения металлов на примере получения меди из оксида меди(II).

Запись уравнений соответствующих реакций:

Еще один способ получения металлов из растворов и расплавов их солей – электрохимический, или электролиз.

Электролиз – это окислительно-восстановительный процесс, происходящий на электродах при пропускании электрического тока через расплав или раствор электролита.

Электролиз расплава хлорида натрия:

NaCl Na + + Cl – ;

катод (–) (Na + ): Na + + е = Na 0 ,

анод (–) (Cl – ): Cl – – е = Cl 0 , 2Cl 0 = Cl2;

2NaCl = 2Na + Cl2.

Электролиз раствора хлорида натрия:

NaCl Na + + Cl – ,

H2O Н + + ОН – ;

катод (–) (Na + ; Н + ): H + + е = H 0 , 2H 0 = H2

анод (+) (Cl – ; OН – ): Cl – – е = Cl 0 , 2Cl 0 = Cl2;

2NaCl + 2H2O = 2NaOH + Cl2 + H2.

Электролиз раствора нитрата меди(II):

Cu(NO3)2 Cu 2+ +

Н2O H + + OH – ;

катод (–) (Cu 2+ ; Н + ): Cu 2+ + 2е = Cu 0 ,

анод (+) ( OН – ): OH – – е = OH 0 ,

2Cu(NO3)2 + 2H2O = 2Cu + O2 + 4HNO3.

Эти три примера показывают, почему электролиз проводить выгоднее, чем осуществлять другие способы получения металлов: получаются металлы, гидроксиды, кислоты, газы.

Мы писали схемы электролиза, а теперь попробуем написать сразу уравнения электролиза, не обращаясь к схемам, а только используя шкалу активности ионов:

Примеры уравнений электролиза:

2HgSO4 + 2H2O = 2Hg + O2 + 2H2SO4;

Na2SO4 + 2H2O = Na2SO4 + 2H2 + O2;

2LiCl + 2H2O = 2LiOH + H2 + Cl2.

Решение задач из учебника Г.Е.Рудзитиса и Ф.Г.Фельдмана (9-й класс, с. 120, № 1, 2).

Задача 1. При электролизе раствора хлорида меди(II) масса катода увеличилась на 8 г. Какой газ выделился, какова его масса?

CuCl2 + H2O = Cu + Cl2 + H2O,

(Cu) = 8/64 = 0,125 моль,

(Cu) = (Сl2) = 0,125 моль,

Ответ. Газ – хлор массой 8,875 г.

Задача 2. При электролизе водного раствора нитрата серебра выделилось 5,6 л газа. Сколько граммов металла отложилось на катоде?

4AgNO3 + 2H2O = 4Ag + O2 + 4HNO3,

(O2) = 5,6/22,4 = 0,25 моль,

(Ag) = 4(O2) = 4•25 = 1 моль,

m(Ag) = 1•107 = 107 г.

Ответ. 107 г серебра.

Тестирование

Вариант 1

1. При электролизе раствора гидроксида калия на катоде выделяется:

а) водород; б) кислород; в) калий.

2. При электролизе раствора сульфата меди(II) в растворе образуется:

а) гидроксид меди(II);

б) серная кислота;

3. При электролизе раствора хлорида бария на аноде выделяется:

а) водород; б) хлор; в) кислород.

4. При электролизе расплава хлорида алюминия на катоде выделяется:

а) алюминий; б) хлор;

в) электролиз невозможен.

5. Электролиз раствора нитрата серебра протекает по следующей схеме:

а) AgNO3 + H2O Ag + Н2 + HNO3;

б) AgNO3 + H2O Ag + О2 + HNO3;

в) AgNO3 + H2O AgNO3 + Н2 + О2.

Вариант 2

1. При электролизе раствора гидроксида натрия на аноде выделяется:

а) натрий; б) кислород; в) водород.

2. При электролизе раствора сульфида натрия в растворе образуется:

а) сероводородная кислота;

б) гидроксид натрия;

3. При электролизе расплава хлорида ртути(II) на катоде выделяется:

а) ртуть; б) хлор; в) электролиз невозможен.

4. При электролизе раствора нитрата серебра на катоде выделяется:

а) серебро; б) водород; в) кислород.

5. Электролиз раствора нитрата ртути(II) протекает по следующей схеме:

а) Hg(NO3)2 + H2O Hg + Н2 + HNO3;

б) Hg(NO3)2 + H2O Hg + О2 + HNO3;

в) Hg(NO3)2 + H2O Hg(NO3)2 + Н2 + О2.

Вариант 3

1. При электролизе раствора нитрата меди(II) на катоде выделяется:

а) медь; б) кислород; в) водород.

2. При электролизе раствора бромида лития в растворе образуется:

б) бромоводородная кислота;

в) гидроксид лития.

3. При электролизе расплава хлорида серебра на катоде выделяется:

а) серебро; б) хлор; в) электролиз невозможен.

4. При электролизе раствора хлорида алюминия алюминий выделяется на:

а) катоде; б) аноде; в) остается в растворе.

5. Электролиз раствора бромида бария протекает по следующей схеме:

а) BaBr2 + H2O Br2 + Н2 + Ba(OH)2;

б) BaBr2 + H2O Br2 + Ba + H2O;

в) BaBr2 + H2O Br2 + О2 + Ba(OH)2.

Вариант 4

1. При электролизе раствора гидроксида бария на аноде выделяется:

а) водород; б) кислород; в) барий.

2. При электролизе раствора йодида калия в растворе образуется:

а) йодоводородная кислота;

б) вода; в) гидроксид калия.

3. При электролизе расплава хлорида свинца(II) на катоде выделяется:

а) свинец; б) хлор; в) электролиз невозможен.

4. При электролизе раствора нитрата серебра на катоде выделяется:

а) серебро; б) водород; в) кислород.

5. Электролиз раствора сульфида натрия протекает по следующей схеме:

а) Na2S + H2O S + Н2 + NaOH;

б) Na2S + H2O Н2 + O2 + Na2S;

в) Na2S + H2O Н2 + Na2S + NaOH.

ВариантВопрос 1Вопрос 2Вопрос 3Вопрос 4Вопрос 5
1аббаб
2ббааб
3авава
4бвааа

Применение электролиза в народном хозяйстве

1. Для защиты металлических изделий от коррозии на их поверхность наносят тончайший слой другого металла: хрома, серебра, золота, никеля и т.д. Иногда, чтобы не расходовать дорогие металлы, производят многослойное покрытие. Например, внешние детали автомобиля сначала покрывают тонким слоем меди, на медь наносят тонкий слой никеля, а на него – слой хрома.

При нанесении покрытий на металл электролизом они получаются ровными по толщине, прочными. Таким способом можно покрывать изделия любой формы. Эту отрасль прикладной электрохимии называют гальваностегией.

2. Кроме защиты от коррозии гальванические покрытия придают красивый декоративный вид изделиям.

3. Другая отрасль электрохимии, близкая по принципу к гальваностегии, названа гальванопластикой. Это процесс получения точных копий различных предметов. Для этого предмет покрывают воском и получают матрицу. Все углубления копируемого предмета на матрице будут выпуклостями. Поверхность восковой матрицы покрывают тонким слоем графита, делая ее проводящей электрический ток.

Полученный графитовый электрод опускают в ванну с раствором сульфата меди. Анодом служит медь. При электролизе медный анод растворяется, а на графитовом катоде осаждается медь. Таким образом получается точная медная копия.

С помощью гальванопластики изготавливают клише для печати, грампластинки, металлизируют различные предметы. Гальванопластика открыта русским ученым Б.С.Якоби (1838).

Изготовление штампов для грампластинок включает нанесение тончайшего серебряного покрытия на пластмассовую пластинку, чтобы она стала электропроводной. Затем на пластинку наносят электролитическое никелевое покрытие.

Чем следует сделать пластинку в электролитической ванне – анодом или катодом?

(О т в е т. Катодом.)

4. Электролиз используют для получения многих металлов: щелочных, щелочно-земельных, алюминия, лантаноидов и др.

5. Для очистки некоторых металлов от примесей металл с примесями подключают к аноду. Металл растворяется в процессе электролиза и выделяется на металлическом катоде, а примесь остается в растворе.

6. Электролиз находит широкое применение для получения сложных веществ (щелочей, кислородсодержащих кислот), галогенов.

Схема электролиза воды

Цели урока. Провести электролиз воды, показать гальваностегию на практике, закрепить знания, полученные на первом уроке.

Оборудование. На столах учащихся: плоская батарейка, два провода с клеммами, два графитовых электрода, химический стакан, пробирки, штатив с двумя лапками, 3%-й раствор сульфата натрия, спиртовка, спички, лучина.

На столе учителя: то же + раствор медного купороса, латунный ключ, медная трубка (кусок меди).

1. Прикрепить провода клеммами к электродам.

2. Электроды поставить в стакан, чтобы они не соприкасались.

3. Налить в стакан раствор электролита (сульфата натрия).

4. В пробирки налить воды и, опустив их в стакан с электролитом кверху дном, надеть их на графитовые электроды поочередно, закрепив верхний край пробирки в лапке штатива.

5. После того как прибор будет смонтирован, концы проводов прикрепить к батарейке.

6. Наблюдать выделение пузырьков газов: на аноде их выделяется меньше, чем на катоде. После того как в одной пробирке почти вся вода вытеснится выделяющимся газом, а в другой – наполовину, отсоединить провода от батарейки.

7. Зажечь спиртовку, осторожно снять пробирку, где вода почти полностью вытеснилась, и поднести к спиртовке – раздастся характерный хлопок газа.

8. Зажечь лучину. Снять вторую пробирку, проверить тлеющей лучиной газ.

Задания для учащихся

1. Зарисовать прибор.

2. Написать уравнение электролиза воды и пояснить, почему надо было проводить электролиз в растворе сульфата натрия.

3. Написать уравнения реакций, отражающие выделение газов на электродах.

Учительский демонстрационный эксперимент
(могут выполнять лучшие ученики класса
при наличии соответствующего оборудования)

1. Подсоединить клеммы проводов к медной трубке и латунному ключу.

2. Опустить трубку и ключ в стакан с раствором сульфата меди(II).

3. Подсоединить вторые концы проводов к батарейке: «минус» батарейки к медной трубке, «плюс» к ключу!

4. Наблюдать выделение меди на поверхности ключа.

5. После выполнения эксперимента вначале отсоединить клеммы от батарейки, затем вынуть ключ из раствора.

6. Разобрать схему электролиза с растворимым электродом:

CuSО4 = Сu 2+ +

анод (+): Сu 0 – 2e = Cu 2+ ,

катод (–): Cu 2+ + 2e = Сu 0 .

Суммарное уравнение электролиза с растворимым анодом написать нельзя.

Электролиз проводился в растворе сульфата меди(II), поскольку:

а) нужен раствор электролита, чтобы протекал электрический ток, т.к. вода является слабым электролитом;

б) не будут выделяться какие-либо побочные продукты реакций, а только медь на катоде.

Ученик 9-го класса проводит
практическую работу
«Электролиз воды»

7. Для закрепления пройденного написать схему электролиза хлорида цинка с угольными электродами:

катод (–): Zn 2+ + 2e = Zn 0 ,

Суммарное уравнение реакции в данном случае написать нельзя, т.к. неизвестно, какая часть общего количества электричества идет на восстановление воды, а какая – на восстановление ионов цинка.

Схема демонстрационного эксперимента

1. Написать уравнение электролиза раствора, содержащего смесь нитрата меди(II) и нитрата серебра, с инертными электродами.

2. Написать уравнение электролиза раствора гидроксида натрия.

3. Чтобы очистить медную монету, ее надо подвесить на медной проволоке, присоединенной к отрицательному полюсу батареи, и опустить в 2,5%-й раствор NаОН, куда следует погрузить также графитовый электрод, присоединенный к положительному полюсу батареи. Объясните, каким образом монета становится чистой. (Ответ. На катоде идет восстановление ионов водорода:

Водород вступает в реакцию с оксидом меди, находящимся на поверхности монеты:

Этот способ лучше, чем чистка порошком, т.к. не стирается монета.)

ЭЛЕКТРОЛИЗ РАСТВОРА ХЛОРИДА НАТРИЯ

Электролиз раствора NaCl — наиболее простой и экономичный метод одновременного получения трех важнейших химических продуктов — хлора, водорода и гидроксида натрия с использовани­ем дешевого и доступного природного сырья. Электролитическое получение хлора, водорода и щелочей — самое крупнотоннажное электрохимическое производство. Суммарная реакция в электролизере может быть выражена уравнением

Хлор применяется в больших масштабах как исходный материал для производства хлорорганических растворителей, пластических масс, синтетических каучуков, химических волокон, ядохимикатов. В металлургии хлор применя­ют для хлорирующего обжига руд, в текстильной и целлюлозно-бумажной промышленности для очистки и отбелки целлюлозы.

Исходным материалом для электролитического производства хлора, гидроксида натрия и водорода служит очищенный от при­месей концентрированный раствор (рассол), содержащий 305— 310 г/дм 3 NaCl. Сырьем для получения рассола могут служить ка­менная соль, озерная соль, природные подземные растворы NaCl.

Электролиз раствора NaCl осуществляют двумя методами, раз­личными по электрохимическим процессам на электродах и по аппаратурному оформлению: 1) электролиз с твердым катодом и фильтрующей диафрагмой и 2) электролиз без диафрагмы с жид­ким ртутным катодом. Газообразные продукты — хлор и водород при любом способе отличаются высокой чистотой. При электролизе с жидким ртутным катодом и третий продукт — раствор гидро­ксида натрия имеет высокую концентрацию NaOH и является хи­мически чистым. Благодаря чистоте получаемых продуктов, про­стому и компактному аппаратурному оформлению, а также не­сложности, одностадийности химико-технологической системы элек­тролиз раствора NaCl сейчас единственный в мире способ произ­водства хлора и основной способ производства гидроксида натрия.

Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой. Выход продуктов электролиза раствора NaCl зави­сит от селективности электрохимических реакций на электродах и от химических реакций в объеме электролита. При прохождении постоянного электрического тока через электролит, содержащий ионы Na + , Cl – , H + и ОН – , последовательность разряда этих ионов на электродах первоначально определяется величинами их стан­дартных электродных потенциалов. На катоде происходит исключительно выделение водорода, поскольку потен­циал разряда натрия имеет высокое зна­чение.

Материалом для катода служит сталь, на которой водород выделяется с относительно невысоким перенапряжением (0,3 В). В ре­альных условиях электролиза (концентрированный раствор NaCl, содержащий NaOH, температура 90°С) фактический потенциал выделения водорода составляет около —0,845 В. Снижения потенциала до 0,3—0,4 В можно достигнуть применением пористых графитовых катодов, для упрочнения и гидрофобизации пропитан­ных политетрафторэтиленом и активированных солями меди или серебра.

Материалом для анодов ранее служил графит. Сейчас применяют оксидно-рутениевые аноды (композиция из оксидов титана и рутения, нанесенных на титановую основу). Оксидно-рутениевые аноды более прочны, чем графитовые, и не реагируют с кислоро­дом, образующимся вследствие побочной анодной реакции. Стан­дартный потенциал хлора более электроположителен, чем ОН-ионов, но на угольных и оксидно-рутениевых анодах ОН-ионы раз­ряжаются с большим перенапряжением; поэтому основной анод­ный процесс — выделение хлора. Выделению хлора на аноде способствует повышение концентрации NaCl в исходном электролите и повышение температуры, так как в этих условиях понижается равновесный потенциал разряда С1 – , а также фак­тический электродный потенциал ввиду уменьшения перенапря­жения разряда хлорид-ионов.

В промышленных условиях при электролизе раствора NaCl на­ряду с основными электрохимическими реакциями идут побоч­ные— на аноде и в объеме электролита.

На аноде образуется кислород, при взаимодействии которого с углеродом графитового анода об­разуется диоксид углерода.

В объеме электролита анодного пространства в результате гидролиза хлора идут химические реакции с образованием побочных продуктов гипохлорита, хлората и хлорида натрия.

В межэлектродном пространстве, куда вследствие диффузии попадают ионы ОН – , идет реакция

HOCI + NaOH ® NaOCl + Н2О

На аноде происходит электрохимическое окисление ионов ОС1 – с образованием хлората:

6ОС1 – + 3Н2О – 6е – ® 2С1О3 – + 4С1 – + 3О2 + 6Н +

Побочные реакции снижают вы­ход по току основных продуктов и повышают расходные коэффи­циенты по электроэнергии. Усло­вия электролиза и конструкция электролизеров направлены на минимальное протекание побочных реакций и достижение максимального выхода по току целевых продуктов. Для этого электро­лиз реализуют в электролизерах непрерывного действия с верти­кальными фильтрующими диафрагмами при противотоке движе­ния электролита и ОН-ионов. Схема элемента электролизера представлена на рис. 4.

Корпус ванны, обычно прямоугольный, разделен на катодное и анодное пространства пористой диафраг­мой из асбеста, модифицированного полимерными веществами. Диафрагма плотно прилегает к перфорированному (с множеством отверстий) или сетчатому стальному катоду. В современных электролизерах катоды имеют гребенчатую разветвленную форму с целью развития поверхности. В анодном пространстве располо­жен оксидно-рутениевый анод. Очищенный рассол подают в анод­ное пространство и вследствие гидростатического давления он фильтруется через диафрагму и катод в катодное пространство. Из катодного пространства непрерывно отводят водород и раствор гидроксида натрия, а из анодного пространства — хлор. В образующемся хлор-газе содержится 95—96% С12. Хлор-газ охлаждают до 20°С (при этом конденсируется вода) и дополнительно сушат промывкой концентрированной серной кислотой. Для транспортировки хлор сжижают под давлением 1—1,2 МПа (или при —5—25°С под давлением 0,3—0,6 МПа) и перевозят в баллонах или цистернах. Катодный продукт — раствор гидроксида натрия содержит 120—140 г/дм 3 NaOH и 170—180 г/дм 3 не разложивше­гося NaCl. Раствор выпаривают, при этом NaCl переходит в твер­дую фазу, так как его растворимость резко понижается с увеличе­нием концентрации NaOH.

B последние годы для электролиза раствора NaCl начали при­менять фильтрпрессные электролизеры большой мощности с би­полярными электродами.

Электролиз раствора хлорида натрия с ртутным катодом. На ртутном катоде водород выделяется с большим перенапряжением; потенциал разряда иона Н+ на ртутном катоде составляет 1,7 — 1,85 В. Натрий выделяется на ртутном катоде с большим эффек­том деполяризации, т. е. потенциал разряда иона Na + на ртути много ниже стандартного и равен 1,23 В. Явление деполяризации ртутного катода обеспечивается тем, что разряд ионов натрия про­исходит с образованием химического соединения — амальгамы натрия, которая непрерывно отводится с поверхности анода, растворяясь в избытке ртути. На перфорированном графитовом (или оксидно-ру­тениевом) электроде выделяется хлор.

Амальгаму натрия, содержащую 0,1—0,3% Na, выводят из элек­тролизера и разлагают нагретой водой в другом реакторе-разлагателе.

Схема электролизера с ртутным катодом показана на рис. 5.

Глубоко очищенный концентрированный раствор NaCl подают в наклонный удлиненный электролизер, по дну которого самотеком, противотоком рассолу, движется ртуть, служащая катодом. Над ртутью расположен горизонтальный оксидно-рутениевый (или пер­форированный графитовый) анод, погруженный в рассол. Хлор подают на осушку, а обесхлоренный рассол после очистки от ртути, до насыщения каменной солью и реагентной очистки от примесей вновь возвращается в электролизер. Амальгама натрия из элек­тролизера перетекает в наклонный реактор-разлагатель, где дви­жется противотоком дистиллированной воде, подаваемой в коли­честве, обеспечивающем получение 45%-ного раствора NaOH. На дне разлагателя размещены гребенчатые графитовые плиты, образующие с амальгамой короткозамкнутый гальванический элемент NaHgn[NaОH]C. Раствор гидроксида натрия в сепараторах отделяют от водорода и передают потреби­телям. Ртуть, вытекающая из разлагателя, ртутным насосом пе­рекачивают в электролизер.

Метод электролиза с ртутным катодом требует особо тщатель­ной очистки исходного циркулирующего рассола, так как примеси магния, железа, кальция и других металлов снижают перенапря­жение водорода на ртутном катоде, что может привести к на­рушению катодного процесса и к взрывам. Для подавления раз­ряда ионов Н + применяют высокую плотность тока.

Электролиз с ртутным катодом дает, химически чистые растворы гидроксида натрия. Но использование ртути вредно для здо­ровья людей. Для получения химически чистых растворов NaOH начали применять электролиз раствора NaCl с ионообменной (катионообменной) мембраной, разделяющей катодное и анодное про­странства. Этот метод более сложен по аппаратурному оформле­нию и эксплуатации аппаратуры, но он значительно безопаснее, чем ртутный. Мембранный метод электролиза, так же как и диафрагменный, может считаться малоотходным технологическим процессом.

Дата добавления: 2016-01-20 ; просмотров: 2044 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://him.1sept.ru/article.php?ID=200701405

http://helpiks.org/6-57868.html