Уравнение реакции фтора с кислородом

Галогены. Химия галогенов и их соединений

Галогены

Положение в периодической системе химических элементов

Галогены расположены в главной подгруппе VII группы (или в 17 группе в современной форме ПСХЭ) периодической системы химических элементов Д.И. Менделеева.

Электронное строение галогенов

Электронная конфигурация галогенов в основном состоянии соответствует формуле ns 2 np 5 .

Например , электронная конфигурация фтора :

Электронная концигурация хлора :

Атомы галогенов содержат на внешнем энергетическом уровне 1 неспаренный электрон и три неподеленные электронные пары в основном энергетическом состоянии. Следовательно, в основном состоянии атомы галогенов могут образовывать 1 связи по обменному механизму.

При этом у фтора возбужденного состояния нет, т.е. максимальная валентность фтора в соединения равна I.

Однако, в отличие от фтора, за счет вакантной d-орбитали атомы хлора, брома и йода могут переходить в возбужденное энергетическое состояние.

Таким образом, максимальная валентность галогенов (кроме фтора) в соединениях равна VII. Также для галогенов характерны валентности I, III, V.

Степени окисления атома галогенов – от -1 до +7. Характерные степени окисления -1, 0, +1, +3, +5, +7. Для фтора характерная степень окисления -1 и валентность I.

Физические свойства и закономерности изменения свойств

Галогены образуют двухатомные молекулы состава Hal2. В твёрдом состоянии имеют молекулярную кристаллическую решетку. Плохо растворимы в воде, все имеют запах, летучи.

ГалогенFClBrI
Электронная формула… 2s 2 2p 5… 3s 2 3p 5… 4s 2 4p 5… 5s 2 5p 5
Электроотрицательность4,03,02,82,5
Степени окисления-1-1, +1, +3, +5, +7-1, +1, +3, +5, +7-1, +1, +3, +5, +7
Агрегатное состояниеГазГазЖидкостьТвердые кристаллы
ЦветСветло-желтыйЖёлто-зелёныйБуровато-коричневыйТёмно-серый с металлическим блеском
ЗапахРезкийРезкий, удушливыйРезкий, зловонныйРезкий
T плавления–220 о С–101 о С–7 о С113,5 о С
Т кипения–188 о С–34 о С58 о С185 о С

Внешний вид галогенов:

Фтор

Хлор

Бром

Йод

В природе галогены встречаются в виде соединений, в основном, в виде галогенидов.

Соединения галогенов

Типичные соединения хлора:

Степень окисленияТипичные соединения
+7Хлорная кислота HClO4

Перхлораты MeClO4

+5Хлорноватая кислота HClO3

Хлораты MeClO3

+3Хлористая кислота HClO2
+1Хлорноватистая кислота HClO

Гипохлориты MeClO

–1Хлороводород HCl, Хлориды MeCl

Бром и йод образуют подобные соединения.

Способы получения галогенов

1. Получение хлора.

В промышленности хлор получают электролизом расплава или раствора хлорида натрия.

Электролиз расплава хлорида натрия.

В расплаве хлорид натрия диссоциирует на ионы:

NaCl → Na + + Cl

На катоде восстанавливаются ионы натрия:

K(–): Na + +1e → Na 0

На аноде окисляются ионы хлора:

A(+): 2Cl − ̶ 2e → Cl2 0

Ионное уравнение электролиза расплава хлорида натрия:

2Na + + 2Cl − → 2Na º + Cl2º

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl → 2Na + Cl2

Электролиз раствора хлорида натрия.

В растворе хлорид натрия диссоциирует на ионы:

NaCl → Na + + Cl

На катоде восстанавливаются молекулы воды:

K(–): 2H2O + 2e → H2° + 2OH −

На аноде окисляются ионы хлора:

A(+): 2Cl − ̶ 2e → Cl2 0

Ионное уравнение электролиза раствора хлорида натрия:

Суммарное уравнение электролиза раствора хлорида натрия:

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.

Например , взаимодействием соляной кислоты с оксидом марганца (IV)

Или перманганатом калия:

2KMnO4 + 16HCl → 2MnCl2 + 2KCl + 5Cl2↑ + 8H2O

Бертолетова соль также окисляет соляную кислоту:

KClO3 + 6HCl → KCl + 3Cl2↑ + 3H2O

Бихромат калия окисляет соляную кислоту:

2. Получение фтора.

Фтор получают электролизом расплава гидрофторида калия.

3. Получение брома.

Бром можно получить окислением ионов Br – сильными окислителями.

Например , бромоводород окисляется хлором:

2HBr + Cl2 → Br2 + 2HCl

Соединения марганца также окисляют бромид-ионы.

Например , оксид марганца (IV):

4. Получение йода.

Йод получают окислением ионов I – сильными окислителями.

Например , хлор окисляет йодид калия:

2KI + Cl2 → I2 + 2KCl

Соединения марганца также окисляют йодид-ионы.

Например , оксид марганца (IV) в кислой среде окисляет йодид калия:

Химические свойства галогенов

Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.

1. Галогены проявляют свойства окислителей . Галогены реагируют с металлами и неметаллами .

1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:

1.2. При взаимодействии галогенов с серой образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:

1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.

Например , железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):

3Cl2 + 2Fe → 2FeCl3

Аналогичная ситуация с медью : фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):

I2 + 2Cu → 2CuI

Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).

Еще пример : алюминий взаимодействует с хлором с образованием хлорида алюминия:

3Cl2 + 2Al → 2AlCl3

1.5. Водород горит в атмосфере фтора:

С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:

Бром также реагирует с водородом с образованием бромоводорода:

Взаимодействие йода с водородом происходит только при сильном нагревании, реакция протекает обратимо, с поглощением теплоты (эндотермическая):

1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.

Например , фтор окисляет хлор, бром и йод:

2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.

2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.

Например , хлор при растворении в холодной воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):

Cl2 + H2O ↔ HCl + HClO

При растворении в горячей воде хлор диспропорционирует до степеней окисления -1 и +5, образуя соляную кислоту и хлороватую кислоту:

Фтор реагирует с водой со взрывом:

2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.

Например , хлор реагирует с холодным раствором гидроксидом натрия:

При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:

Еще пример : хлор растворяется в холодном растворе гидроксида кальция:

2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.

Например , хлор вытесняет йод и бром из раствора йодида калия и бромида калия соответственно:

Cl2 + 2NaI → 2NaCl + I2

Cl2 + 2NaBr → 2NaCl + Br2

Еще одно свойство: более активные галогены окисляют менее активные.

Например , фтор окисляет хлор с образованием фторида хлора (I):

Cl2 + F2 → 2Cl + F –

В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:

2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.

Например , хлор окисляет сероводород:

Cl2 + H2S → S + 2HCl

Хлор также окисляет сульфиты:

Также галогены окисляют пероксиды:

Или, при нагревании или на свету, воду:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кип.)

Галогеноводороды

Строение молекулы и физические свойства

Галогеноводороды HHal – это бинарные соединения водорода с галогенами, которые относятся к летучим водородным соединениям. Галогеноводороды – бесцветные ядовитый газы, с резким запахом, хорошо растворимые в воде.

В ряду HCl – HBr – HI увеличивается длина связи и ковалентности связи уменьшается полярность связи H – Hal.

Растворы галогеноводородов в воде (за исключением фтороводорода) – сильные кислоты. Водный раствор фтороводорода – слабая кислота.

Способы получения галогеноводородов

В лаборатории галогеноводороды получают действием нелетучих кислот на хлориды металлов.

Например , действием концентрированной серной кислоты на хлорид натрия:

Галогеноводороды получают также прямым взаимодействием простых веществ:

Химические свойства галогеноводородов

1. В водном растворе галогеноводороды проявляют кислотные свойства . Взаимодействуют с основаниями, основными оксидами, амфотерными гидроксидами, амфотерными оксидами . Кислотные свойства в ряду HF – HCl – HBr – HI возрастают.

Например , хлороводород реагирует с оксидом кальция, оксидом алюминия, гидроксидом натрия, гидроксидом меди (II), гидроксидом цинка (II), аммиаком:

2HCl + CaO → CaCl2 + H2O

HCl + NaOH → NaCl + H2O

Как типичные минеральные кислоты, водные растворы галогеноводородов реагируют с металлами , расположенными в ряду активности металлов до водорода. При этом образуются соль металла и водород.

Например , соляная кислота растворяет железо. При этом образуется водород и хлорид железа (II):

Fe + 2HCl → FeCl2 + H2

2. В водном растворе галогеноводороды диссоциируют , образуя кислоты. Водный раствор фтороводорода (плавиковая кислота) – слабая кислота:

HF ↔ H + + F –

Водные растворы хлороводорода (соляная кислота), бромоводорода и йодоводорода – сильные кислоты, в разбавленном растворе диссоциируют практически полностью:

HCl ↔ H + + Cl –

3. Водные растворы галогеноводородов взаимодействуют с солями более слабых кислот и с некоторыми растворимыми солями (если образуется газ, осадок, вода или слабый электролит).

Например , соляная кислота реагирует с карбонатом кальция:

Качественная реакция на галогенид-ионы – взаимодействие с растворимыми солями серебра.

При взаимодействии соляной кислоты с нитратом серебра (I) образуется белый осадок хлорида серебра:

HCl + AgNO3 = AgCl↓ + HNO3

Осадок бромида серебра – бледно-желтого цвета:

HBr + AgNO3 = AgBr↓ + HNO3

Осадок иодида серебра – желтого цвета:

HI + AgNO3 = AgI↓ + HNO3

Фторид серебра – растворимая соль, поэтому реакция плавиковой кислоты и ее солей с нитратом серебра не является качественной.

Видеоопыты качественных реакций на хлорид-, бромид- и йодид-ионы (взаимодействие с нитратом серебра) можно посмотреть здесь.

4. Восстановительные свойства галогеноводородов усиливаются в ряду HF – HCl – HBr – HI.

Галогеноводороды реагируют с галогенами . При этом более активные галогены вытесняют менее активные.

Например , бром вытесняет йод из йодоводорода:

Br2 + 2HI → I2 + 2HBr

А вот хлор не может вытеснить фтор из фтороводорода.

Фтороводород практически невозможно окислить.

Концентрированная соляная кислота окисляется соединениями марганца с валетностью выше II или соединениями хрома (VI).

Например : концентрированная соляная кислота окисляется оксидом марганца (IV):

Бромоводород – сильный восстановитель и окисляется соединениями марганца, хрома (VI), концентрированной серной кислотой и другими сильными окислителями:

Например , бромоводород окисляется концентрированной серной кислотой:

Бромоводород реагирует с бихроматом калия с образованием молекулярного брома:

Или с оксидом марганца (IV):

Пероксид водорода также окисляет бромоводород до молекулярного брома:

Йодоводород – еще более сильный восстановитель, и окисляется другими неметаллами и даже такими окислителями, как соединения железа (III) и соединения меди (II).

Например , йодоводород реагирует с хлоридом железа (III) с образованием молекулярного йода:

2HI + 2FeCl3 → I2 + 2FeCl2 + 2HCl

или с сульфатом железа (III):

Йодоводород легко окисляется соединениями азота, например , оксидом азота (IV):

или молекулярной серой при нагревании:

2HI + S → I2 + H2S

5. Плавиковая кислота реагирует с оксидом кремния (IV) (растворяет стекло):

Галогениды металлов

Галогениды – это бинарные соединения галогенов и металлов или некоторых неметаллов, соли галогеноводородов.

Способы получения галогенидов

1. Галогениды металлов получают при взаимодействии галогенов с металлами . При этом галогены проявляют свойства окислителя.

Например , хлор взаимодействует с магнием и кальцием:

При взаимодействии железа с хлором образуется хлорид железа (III):

3Cl2 + 2Fe → 2FeCl3

2. Галогениды металлов можно получить при взаимодействии металлов с галогеноводородами.

Например , соляная кислота реагирует с железом с образованием хлорида железа (II):

Fe + 2HCl → FeCl2 + H2

3. Галогениды металлов можно получить при взаимодействии основных и амфотерных оксидов с галогеноводородами.

Например , при взаимодействии оксида кальция и соляной кислоты:

2HCl + CaO → CaCl2 + H2O

Еще пример : взаимодействие оксида алюминия с соляной кислотой:

4. Галогениды металлов можно получить при взаимодействии оснований и амфотерных гидроксидов с галогеноводородами.

Например , при взаимодействии гидроксида натрия и соляной кислоты:

HCl + NaOH → NaCl + H2O

Или при взаимодействии гидроксида меди (II) с соляной кислотой:

Гидроксид цинка (II) также взаимодействует с соляной кислотой:

5. Некоторые соли взаимодействуют с галогеноводородами с образованием галогенидов металлов.

Например , гидрокарбонат натрия реагирует с бромоводородом с образованием бромида натрия:

HBr + NaHCO3 → NaBr + CO2↑ + H2O

Взаимодействие с нитратом серебра – качественная реакция на соляную кислоту, бромодоводород и йодоводород:

HCl + AgNO3 → AgCl↓ + HNO3

HBr + AgNO3 → AgBr↓ + HNO3

HI + AgNO3 → AgI↓ + HNO3

Химические свойства галогенидов

1. Растворимые галогениды вступают в обменные реакции с растворимыми солями, кислотами и основаниями , если образуется осадок, газ или вода.

Например , бромиды, йодиды и хлориды реагируют с нитратом серебра с образованием желтого, желтого и белого осадков соответственно.

NaCl + AgNO3 → AgCl↓ + NaNO3

Фторид серебра – растворимая соль, поэтому реакция фторидов с нитратом серебра не является качественной.

Видеоопыты качественных реакций на хлорид-, бромид- и йодид-ионы (взаимодействие с нитратом серебра) можно посмотреть здесь.

2. Галогениды тяжелых металлов реагируют с более активными металлами . При этом более активные металлы вытесняют менее активные.

Например , магний вытесняет медь из расплава хлорида меди (II):

Mg + CuCl2 → MgCl2 + Cu

Обратите внимание! В растворе более активные металлы вытесняют менее активные только если более активные металлы не взаимодействуют с водой (металлы, расположенные в ряду активности до магния). Если добавляемый металл слишком активен, то он провзаимодействует с водой, а не с солью.

Например , натрий не вытесняет цинк из раствора хлорида цинка. Т.к. натрий реагирует с водой, а реакция с хлоридом цинка не идет.

Na + ZnCl2(раствор)

3. Галогениды подвергаются электролизу в растворе или расплаве. При этом на аноде образуются галогены.

Например , при электролизе расплава бромида калия на катоде образуется клий, а на аноде – бром:

2KBr → 2K + Br2

При электролизе раствора бромида калия на катоде выдялется водород, а на аноде также образуется бром:

4. Галогениды металлов проявляют восстановительные свойства . Хлориды окисляются только сильными окислителями, а вот йодиды уже являются очень сильными восстановителями. В целом, восстановительные свойства галогенидов аналогичны свойствам галогеноводородов.

Например , бромид калия окисляется концентрированной серной кислотой:

Еще пример : йодид калия окисляется соединениями меди (II) и соединениями железа (III):

4KI + 2CuCl2 → 2CuI↓ + I2↓ + 4KCl

2KI + 2FeCl3 → I2↓ + 2FeI2 + 2KCl

Еще несколько примеров восстановительных свойств галогенидов:

KI + 3H2O + 3Cl2 → HIO3 + KCl + 5HCl

Более активные галогены вытесняют менее активные из солей.

При этом галогениды металлов не горят в кислороде.

5. Нерастворимые галогениды металлов растворяются под действием избытка аммиака .

Например , хлорид серебра (I) растворяется под действием избытка раствора аммиака:

6. Нерастворимые галогениды под действием света разлагаются на галоген и металл.

Например , хлорид серебра разлагается под действием ультрафиолета:

2AgCl → 2Ag + Cl2

Кислородсодержащие кислоты галогенов

Рассмотрим кислородсодержащие кислоты галогенов на примере хлора:

Степень окисления галогена+1+3+5+7
ФормулаHClOHClO2HClO3HClO4
Название кислотыХлорноватистаяХлористаяХлорноватаяХлорная
Устойчивость и силаСуществует только в растворах, слабая кислотаСуществует только в растворах, слабая кислотаСуществует только в растворах, сильная кислотаСильная кислота
Название соответствующей солиГипохлоритыХлоритыХлоратыПерхлораты

Хлорноватистая кислота и ее соли

Хлорноватистая кислота HClO устойчива только в разбавленном водном растворе.

Cпособ получения хлорноватистой кислоты:

1. Диспропорционирование хлора в холодной воде :

Cl2 + H2O ↔ HCl + HClO

Химические свойства хлорноватистой кислоты:

Хлорноватистая кислота HClO – это слабая кислота, но сильный окислитель.

1. Под действием ультрафиолета (на свету) хлорноватистая кислота разлагается :

2HClO → 2HCl + O2

2. Как кислота, хлорноватистая кислота реагирует с сильными основаниями .

Например , с гидроксидом калия:

HClO + KOH → KClO + H2O

3. Ярко выражены окислительные свойства хлорноватистой кислоты за счет атома хлора в степени окисления +1. При взаимодействии с восстановителями хлор, как правило, восстанавливается до степени окисления -1.

Например , хлорноватистая кислота окисляет йодоводород:

HClO + 2HI → HCl + I2 + H2O

Хлорноватистая кислота также окисляет, например , пероксид водорода:

4. Хлорноватистая кислота диспропорционирует:

3HClO → 2HCl + НСlO3

Химические свойства солей хлорноватистой кислоты (гипохлоритов):

1. Более сильные кислоты вытесняют гипохлориты из солей.

Например , соляная кислота реагирует с гипохлоритом натрия:

NaClO + 2HCl → NaCl + Cl2 + H2O

Серная кислота реагирует с гипохлоритом кальция при нагревании или под действием излучения:

Даже угольная кислота вытесняет гипохлориты:

2. Гипохлориты вступают в обменные реакции с другими солями , если образуется слабый электролит.

Например , гипохлорит кальция реагирует с растворимыми карбонатами:

3. При нагревании гипохлориты разлагаются :

Хлористая кислота и ее соли

Хлористая кислота HClO2 – существует только в водных растворах.

Способы получения:

Хлористую кислоту можно получить окислением оксида хлора пероксидом водорода:

Химические свойства хлористой кислоты:

1. Хлористая кислота является также слабой. Реагирует с щелочами с образованием хлоритов:

2. При длительном хранении разлагается:

Хлорноватая кислота и ее соли

Хлорноватая кислота HClO3 – также существует только в водных растворах.

Способы получения:

Хлорноватую кислоту можно получить из солей хлорноватой кислоты – хлоратов.

Например , из хлората бария под действием серной кислоты:

Химические свойства хлорноватой кислоты:

1. Хлорноватая кислота – сильная кислота. Реагирует с щелочами с образованием хлоратов:

2. Хлорноватая кислота – сильный окислитель.

Например , хлорноватая кислота окисляет фосфор:

Химические свойства солей хлорноватой кислоты – хлоратов:

1. Хлораты сильные окислители.

Например , хлорат калия (бертолетова соль) при нагревании разлагается. При этом без катализатора хлорат диспропорционирует:

4KClO3 → 3KClO4 + KCl

В присутствии катализатора (оксид марганца (IV)) хлорат калия разлагается, окисляя кислород:

2KClO3 → 2KCl + 3O2

Еще пример : хлорат калия окисляет серу и фосфор:

2KClO3 + 3S → 2KCl + 3SO2

Хлорная кислота и ее соли

Хлорная кислота HClO4 – это бесцветная жидкость, хорошо растворимая в воде.

Способы получения:

Хлорную кислоту можно получить из солей хлорной кислоты – перхлоратов.

Например , из перхлората натрия под действием серной кислоты:

Химические свойства хлорной кислоты:

1. Хлорная кислота – сильная кислота. Реагирует с щелочами с образованием перхлоратов:

2. Хлорная кислота – сильный окислитель.

Например , хлорная кислота окисляет углерод:

3. При нагревании хлорная кислота разлагается:

Химические свойства солей хлорной кислоты – перхлоратов:

1. Перхлораты сильные окислители.

Например , перхлорат калия при нагревании разлагается. При этом хлор окисляет кислород:

Еще пример : перхлорат калия окисляет алюминий:

Химические свойства фтора

Большая энергия связей между атомом фтора и атомами других элементов является следствием большой электроотрицательности фтора и маленьким размером его атома. Благодаря малой энергии связи молекула фтора легко диссоциирует на атомы и энергия активации реакций со фтором обычно не велика, поэтому процессы с участием фтора протекают очень быстро.

Для фтора характерно:

1. Отсутствие положительных степеней окисления в соединениях с другими элементами.

2. Чрезвычайно низкая энергия активации реакций.

3. Большое выделение энергии при переходе молекулы фтора в анионы F – .

4. Стремление максимально использовать валентные электроны партнеров. Именно в соединениях со фтором реализуются высшие степени окисления многих элементов: BiF5, SF6, IF7, OsF7, CuF3 и др.

Итак, фтор – сильнейший окислитель. По образному выражению академика А. Е. Ферсмана его можно назвать “всесъедающим”.

Щелочные металлы, свинец, железо и большинство порошков других металлов загораются в атмосфере фтора при комнатной температуре. На некоторые металлы (алюминий, железо, никель, медь, цинк, марганец, магний) фтор на холоде не действует из-за образования поверхностной пленки фторидов, защищающей металл от дальнейшего взаимодействия. Поэтому сплавы этих металлов или никеля используют для хранения фтора. Однако при нагревании фтор реагирует со всеми металлами, в т.ч. с золотом и платиной.

Со многими неметаллами (водород, йод, бром, сера, фосфор, мышьяк, сурьма, углерод, кремний, бор) фтор взаимодействует на холоде; реакции протекают со взрывом или с образованием пламени.

С серой, фосфором и сурьмой фтор взаимодействует даже при температуре жидкого воздуха (-190 °C):

С водородом фтор взаимодействует уже при температуре -252 °C

Криптон взаимодействует с фтором под действием электрического разряда, а ксенон горит в атмосфере фтора ярким пламенем.

С кислородом фтор реагирует при низких тепературах в электрических разрядах с образованием эндотермических фторидов кислорода. O2 + F2 = O2F2, -190 °C, электрич. разряд.

При нагревании с фтором реагирует хлор с образованием ClF и ClF3. Бром и йод при взаимодействии с фтором образуют следующие соединения: BrF, BrF3, BrF5, IF, IF3, IF5, IF7.

При нагревании фтор вступает в реакцию и с азотом:

Непосредственно фтор не реагирует только с углеродом (в виде алмаза), гелием, неоном и аргоном.

В реакциях с фтором в роли восстановителей выступают такие вещества как азотная и серная кислоты:

Под действием фтора разлагается вода:

0 °C: H2O(тв) + F2 = HF + HOF (фтороксигенат водорода)

В атмосфере фтора горят такие стойкие вещества, как стекло (в виде ваты), асбест, кварц:

Катализатором этой реакции является вода. С совершенно сухим кварцем или стеклом фтор не взаимодействует.

VII группа главная подгруппа периодический таблицы Менделеева (галогены)

К элементам главной подгруппы VII группы периодической таблицы Менделеева относятся элементы с общим названием «галогены»:

  • Фтор F
  • Хлор Cl
  • Бром Br
  • Йод I
  • Астат At

Общая характеристика галогенов

От F к At (сверху вниз в периодической таблице)

Увеличивается

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Электронные конфигурации у данных элементов схожи, они содержат 7 электронов на внешнем слое ns 2 np 5 :

Br – 3d 10 4s 2 4p 5 ;

I — 4d 10 5s 2 5p 5 ;

At – 4f 14 5d 10 6s 2 6p 5

Электронная конфигурация фтора и хлора

Электронная конфигурация брома и йода

Нахождение в природе галогенов

Галогены являются химически активными веществами, в связи с чем, в природе они встречаются только в виде соединений. Их распространённость в земной коре снижается при увеличении атомного радиуса (от фтора к иоду). Например, содержание астата в земной коре исчисляется граммами.

Наиболее распространённые соединения фтора — флюорит CaF2, криолит Na3AlF6 и др., хлора — каменная соль (галит) NaCl, сильвин KCl и сильвинит KCl⋅NaCl.

Бром и иод не образуют индивидуальных минералов, но их соединения содержатся в морской воде и могут накапливаться водорослями.

Способы получения фтора

Фтор получают методом электролиза расплава гидрофторида калия (смеси HF и KF):

Физические свойства фтора

Фтор при обычной температуре — зеленовато-жёлтый ядовитый газ, с резким запахом, очень реакционноспособный, хорошо растворим в жидких водороде и кислороде.

Химические свойства фтора

Фтор является самым сильным окислителем из всех простых веществ. Непосредственно он не взаимодействует только с N2, Не, Ne, Аr, а при нормальных условиях также и с O2.

Взаимодействие с простыми веществами

С кислородом

Реакция протекает при электрическом разряде (2100-2400 В, 25-30 мА), температуре от -196°C до -183°C и давлении 12 мм рт.ст. с образованием дифторида трикислорода (триоксодифторид, фторид озона) или фторида кислорода:

С галогенами (Cl, Br, I)

Фтор вступает в реакции с другими галогенами:

Например, Cl2 + F2 → 2ClF

С водородом

Взаимодействует с водородом со взрывом даже в темноте:

С серой

Реакция с серой протекает легко даже при сильном охлажлении:

С углеродом

Реакция окисления порошкообразного углерода сопровождается самовоспламенением последнего:

С азотом

При нагревании фтор реагирует и с азотом:

С фосфором

Фтор взаимодействует с P энергично (со взрывом) на свету и в темноте, даже при охлаждении жидким N2:

С кремнием

Взаимодействует с кремнием с образованием фторида кремния

C инертными газами

Окисляет ксенон, образуя фторид ксенона:

С металлами

При взаимодействии с металлами образуются фториды:

  • К, Na, Pb, Feзагораются при обычной температуре на свету. С щелочными металлами реакция протекает со взрывом:
  • Mg, Zn, Sn, Al, Ag, Cu и др. загораются на свету при слабом нагревании:
  • с малоактивными металлами – Au, Pt реагирует при нагревании до 300-400°С

Взаимодействие со сложными веществами

С водой

Фтор активно разлагает воду с образованием таких соединений, как фториды кислорода OF2, O2F2; пероксид водорода Н2O2; кислород, озон, фтороводород:

С кислотами

  • Взаимодействует с безводной азотной кислотой при комнатной температуре с образованием диоксида-гипофторита азота и фтороводорода:
  • С серной кислотой образует гексафторид серы, фтороводород и кислород:

С щелочами и аммиаком

Фтор окисляет щелочи:

Реагирует с газообразным аммиаком:

С солями

Не взаимодействует

Взаимодействие фтора с водными растворами солей невозможны, т.к. он ступает в реакцию с водой.

С оксидами

Реагирует с оксидом кремния, который загорается в атмосфере F2:

Способы получения хлора

Промышленный способ

Электролиз расплавов или водных растворов хлоридов, чаще – NaCl.

  • Электролиз расплава хлорида натрия:

A(+): 2Cl − ̶ 2e → Cl2 0

2Na + + 2Cl − → 2Na º + Cl2º

Таким образом, получаем:

  • Электролиз раствора хлорида натрия.

A(+): 2Cl − ̶ 2e → Cl2 0

Таким образом, получаем:

Лабораторный способ

Окисление концентрированной HCI сильными окислителями:

Физические свойства хлора

Хлор Cl2 при обычной температуре – тяжелый, желто-зеленый газ с резким удушающим запахом.

Cl2 в 2,5 раза тяжелее воздуха, малорастворим в воде (

6,5 г/л); хорошо растворим в неполярных органических растворителях. В свободном состоянии встречается только в вулканических газах.

Химические свойства хлора

Хлор — очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, с образованием в устойчивые хлорид-ионы:

Взаимодействие с простыми веществами

С кислородом

Непосредственно не взаимодействует

С галогенами

Хлор взаимодействует с другими галогенами – более активные галогены окисляют менее активные. В зависимости от условий могут получиться различные соединения:

С водородом

Реакция с водородом при обычных условиях не протекает. Однако, при нагревании, УФ — освещении или электрическом разряде реакция протекает со взрывом:

Непосредственно не взаимодействует

С фосфором

Непосредственно не взаимодействует

С кремнием

2Cl2 + Si = SiCl4 (при нагревании)

С металлами

  • Активные металлы самовоспламеняются и горят в атмосфере сухого газообразного хлора:
  • Окисление малоактивных металлов происходит легче влажным хлором или его водными растворами:

Взаимодействие со сложными веществами

Окисляет сложные вещества:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кипячении)

С водой

При растворении хлора в воде вступает в реакцию диспропорционирования (самоокисления-самовосстановления), с образованием хлорноватистой кислоты:

С водными растворами щелочей

При взаимодействии с щелочами хлор диспропорционирует с образованием солей, состав которых зависит от условий проведения реакции:

  • с холоднымраствором щелочи образуются хлорид и гипохлорит:
  • с горячимраствором щелочи образуются хлорид и хлорат:
  • Хлор также растворяется в холодном растворе гидроксида кальция:

Эти реакции имеют важное практическое значение, приводят к получению гипохлоритов — КClO3 и Са(ClO)2; хлората калия (бертолетова соль) — КClO3

С солями

Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов:

  • замещение атомов водорода в молекулах органических соединений:

  • присоединение молекул Cl2 по месту разрыва кратных углерод-углеродных связей

HC ≡ CH + 2Cl2 → Cl2HC — CHCl2 1,1,2,2-тетрахлорэтан

Способы получения брома

Промышленный способ

  • Исходное сырьё для получения брома — морская вода, озёрные и подземные рассолы и щелока калийного производства, содержащие бром в виде бромид-иона Br-

Бром втесняют при помощи хлора:

Далее бром отгоняют из раствора водяным паром или воздухом.

Лабораторный способ

  • В лаборатории для получения брома используют сильные окислители:

Физические свойства брома

В обычных условиях бром – красно-бурая жидкость с резким зловонным запахом. При Т=-7,2°C жидкий бром застывает, образуя красно-коричневые игольчатые кристаллы.

Пары брома жёлто-бурого цвета, Ткип = 58,78°C.

В воде бром растворяется лучше других галогенов (3,58 г брома в 100 г H2O при 20°C). Хорошо растворим во многих органических растворителях.

Бромная вода имеет желто-бурую окраску, быстро исчезающую, при взаимодействии растворенного Br2 с каким-либо веществом. «Обесцвечивание бромной воды» — широко используется в качестве теста на обнаружение в растворе многих неорганических и органических веществ.

Химические свойства брома

Химические свойства брома сходны с хлором. Различаются только условия протекания реакций.

Взаимодействие с простыми веществами

С металлами

Жидкий бром сильный окислитель. Например, железо и алюминий самовозгораются при соприкосновении с бромом даже при обычной температуре.

С водородом

Взаимодействие брома с водородом происходит лишь при повышенной температуре. Реакция эндотермической и обратимой.

С азотом, углеродом, кислородом и благородными газами

Непосредственно не взаимодействует

С галогенами

Бром окисляется более активными галогенами:

Взаимодействие со сложными веществами

  • Бром окисляет сложные соединения:
  • диспропорционирует в водном растворе:

3BrO — ↔ BrO3 — + 2Br —

4BrO — ↔ BrO4 — + 3Br —

Обесцвечивание бромной воды

Обесцвечивание бромной воды – качественная реакция на многие неорганические и органические соединения:

  • в воде SO2 и H2S в газообразном и растворенном виде, а также растворимые сульфиты и сульфиды реагируют с бромной водой, обесцвечивая ее:
  • Фенол и анилин также легко взаимодействуют с бромной водой:

Способы получения йода

Промышленный способ

  • Йод, также как и бром, извлекают из морской воды, соленых озер, подземных рассолов и буровых вод, где он содержится в виде I — .
  • Получение свободного йода с помощью различных окислителей, чаще всего газообразного хлора:

Лабораторный способ

  • Йод можно получить также как и хлор или бром действием различных окислителей (КМnО4, МnО2, КСlO3, КВrО3, FеСl3 и СuSO4) на иодоводородную кислоту:

2 FеC3 + 2 НI = 2 FeCl2 + I2 + 2 НСl

Физические свойства йода

Свободный йод I2 при обычной температуре — черно-серое с фиолетовым оттенком кристаллическое вещество с металлическим блеском. Легко возгоняется. Пары йода имеют своеобразный запах и очень ядовиты.

Среди галогенов I2 обладает самой меньшей растворимостью в воде, однако он хорошо растворим в спирте и других органических растворителях.

Химические свойства йода

Химическая активность йода – наименьшая по сравнению с другими галогенами. Со многими элементами йод непосредственно не взаимодействует, а с некоторыми реагирует только при повышенных температурах (водород, кремний, многие металлы).

Йод-крахмальная реакция

Обнаружить I2 даже в самой минимальной концентрации можно с помощью раствора крахмала, который при наличии I2 окрашивается в грязно-синий цвет.

Йод-крахмальная реакция используется при качественном обнаружении йода, а также его количественного анализа

Взаимодействие с простыми веществами

С водородом

Реакция обратима и возможна только при высокой температуре:

С металлами

При добавлении капли воды в качестве катализатора цинк, железо и алюминий в смеси с порошком йода горят, образуя йодиды:

С азотом, углеродом, кислородом

Непосредственно не взаимодействует

Взаимодействие со сложными веществами

С водой

Частично реагирует с водой (реакция диспропорционирования):

С щелочью

Диспропорционирует в водном растворе щелочи:

C аммиаком

C аммиаком образует аддукт нитрид трииодида:

С иодидами щелочных металлов

Молекулы галогенов присоединяются к иодидам щелочных металлов с образованием полииодидов (периодидов):

С окислителями

Йод проявляет восстановительные свойства в реакциях с сильными окислителями:

C восстановителями

Иод менее сильный окислитель, чем фтор, хлор и бром. Восстановители, такие как H2S, Na2S2O3 и др. восстанавливают его до иона I − :


источники:

http://himgdz.ru/galogeni/himicheskie-svojstva-ftora/

http://zadachi-po-khimii.ru/neorganicheskaya-ximiya/vii-gruppa-glavnaya-podgruppa-periodicheskij-tablicy-mendeleeva-galogeny.html