Уравнение реакции хлорирования на свету

Галогенирование алканов на примере пропана

Галогенирование – процесс присоединения к молекуле органического соединения атома галогена – это одно из химических взаимодействий, в которых участвуют углеводороды ряда алканов. Благодаря общности структуры молекул у всех членов гомологического ряда реакции с галогеном обладают единым характером. При этом галогенирование пропана и следующих за ним в гомологическом ряду соединений имеет особенности, связанные с наличием в молекулах вторичных, третичных и четвертичных атомов углерода.

Краткая характеристика алканов

К простейшим органическим соединениям относятся ациклические насыщенные, или предельные углеводороды (алканы). Их отличают следующие структурные особенности:

  • неразветвленные (прямые) или разветвленные молекулы, не содержащие циклических образований;
  • все химические связи в молекуле – одинарные.

Общая формула имеет вид . Углеродная цепь в молекулах алканов характеризуется полным насыщением водородными атомами, вследствие чего эти соединения проявляют слабую химическую активность. Они вступают в реакции замещения, окисления, разложения и изомеризации.

Механизм замещения у алканов носит радикальный характер, так как разрыв слабополярной связи C-H протекает с образованием пары свободных радикалов – нейтральных частиц, имеющих по одному неспаренному электрону. Атом водорода может замещаться галогеном, нитрогруппой или сульфогруппой.

Галогенирование алканов

Реакция свободно-радикального замещения (обозначается символом SR – от англ. substitution radical reaction) водородного атома в молекуле алкана атомом галогена называется галогенированием. Ее инициирование требует воздействия ультрафиолетового облучения или повышенной температуры. Реакция носит цепной характер, так как в каждом ее акте образуются свободные радикалы, генерирующие следующий акт.

Замещение фтором – фторирование – чрезвычайно экзотермический процесс, сопровождающийся взрывом и разрушением молекулы алкана. Реакция с участием йода, наоборот, является эндотермической и обратимой – в ходе ее происходит восстановление продукта реакции йодоводородом, поэтому прямое йодирование неэффективно. Практический интерес представляют реакции алканов с хлором и бромом.

Стадии галогенирования

Удобнее всего рассмотреть, какой механизм имеет реакция хлорирования алканов, на примере метана. При облучении или нагреве реакционной смеси реакция инициируется, и далее цепная реакция протекает в несколько стадий.

  1. Зарождение цепи – распад молекулы хлора на активные радикалы:
  2. Развитие цепи. Взаимодействуя с молекулой метана , радикал отщепляет от нее атом водорода с образованием метил-радикала , который, в свою очередь, расщепляет другую молекулу хлора. Эти элементарные акты повторяются многократно, образуя новые радикалы и развивая цепную реакцию:
  3. Обрыв цепи. Цепной процесс прекращается, когда радикалы реагируют между собой:

В общем виде уравнение галогенирования метана хлором записывается в форме:

Процесс замещения не ограничивается образованием хлорметана, на молекулы которого также воздействуют радикалы . Реакция приводит к образованию смеси всех возможных продуктов хлорирования метана:

Выход продуктов зависит от мольного соотношения реагентов и условий реакции. Так, при эквимолярном количестве метана и хлора и температуре 440° C соотношение молярных долей продуктов в процентах составляет около 39:41:19:1.

Реакция бромирования отличается меньшим выделением энергии и протекает медленнее, так как его реакционная способность ниже, чем у хлора.

Региоселективность

Начиная с пропана , в составе молекул алканов появляются вторичные атомы углерода, а с бутана, имеющего два изомера (н-бутан и изобутан ), – третичные, связанные соответственно с двумя и тремя другими углеродными атомами. Скорость галогенирования у разных атомов различна и возрастает в ряду «первичный → вторичный → третичный». Это явление носит название регионаправленности галогенирования, или региоселективности. Четвертичные атомы не участвуют в реакции радикального замещения.

Селективность зависит от следующих факторов:

  • Активность реагента. Чем активнее галоген, тем слабее проявляется избирательность при замещении водорода. Так, при взаимодействии алкана с хлором региоселективность значительно меньше, чем в реакциях с бромом, или не наблюдается.
  • Температура. Нагревание ведет к снижению селективности.

Хлорирование и бромирование пропана

В реакции пропана с хлором при низкой температуре селективная направленность выражена слабо. Несмотря на то, что образующиеся в ходе реакции радикалы менее энергичны и, следовательно, более устойчивы, свободные атомы хлора чрезвычайно активны и воздействуют как на вторичные, так и на первичные атомы, особенно при высокой температуре.

При нагревании радикалы хлора атакуют первичные атомы даже более активно, так как на разрыв их связи с водородом затрачивается меньше энергии.

При бромировании пропана региоселективность вследствие меньшей активности брома достигает высоких значений:

Бромирование протекает аналогично реакции с участием простейших алканов с преимущественным замещением водорода у вторичных атомов:

Продуктом этой реакции является 2-бромпропан.

Галогенирование бутана

В реакциях бутана с хлором селективность не играет заметной роли. Даже при низкой температуре соотношение продуктов хлорирования может быть различным:

Бромирование бутана демонстрирует большую селективность:

Реакция отщепления

Активные двухвалентные металлы (как правило, магний или цинк) отщепляют от молекул дигалогеналканов атомы хлора или брома, если они замещают водород у двух соседних атомов углерода. Между последними образуется двойная связь. Продуктом такой реакции является алкен.

Пример реакции дегалогенирования алканов – отщепление цинком атомов хлора от 1,2-дихлорпропана с образованием пропилена (пропена) и хлорида цинка:

Применение галогеналканов

Хлорированные и бромированные алканы применяются в качестве промежуточных соединений в различных отраслях, таких как синтез высокомолекулярных соединений, производство лаков, красок и растворителей. Хлоралканы служат сырьем для фторалканов, которые нельзя получить прямым фторированием.

Токсичность галогеналканов тем меньше, чем активнее входящий в их состав галоген. Поэтому фторалканы наиболее безопасны. Фторсодержащие фреоны широко используются в качестве вспенивателей, хладагентов и пропеллентов.

Уравнение реакции хлорирования на свету

Хлорирование — процесс замещения атома водорода в ароматическом незамещенном углеводороде или полупродукте атомом хлора. Агентами хлорирования чаще всего служат газообразный хлор и соли хлорноватистой кислоты ( НС l О ).

5.1. Химизм процесса.

Уравнение реакции хлорирования имеет следующий вид:

Следует отметить, что для процессов хлорирования характерно одновременное взаимодействие с хлорагентом не только исходного углеводорода, но и образовавшихся хлорпроизводных, то есть в результате хлорирования получают моно-, ди- и полихлорзамещенные углеводороды. Например, при хлорировании бензола протекают следующие реакции:

Часто получение дихлорбензола является нежелательным, так как это приводит к перерасходу бензола и хлора. Поэтому главной задачей технологии является, в данном случае, создание и поддержание условий процесса, которые обеспечивают максимум выхода хлорбензола. Используют, например, непрерывно ступенчатый метод хлорирования, когда последовательно соединяют несколько реакторов и в каждый подают бензол и хлор.

Процесс хлорирования, как и другие процессы получения полупродуктов (сульфирование, нитрование) связан с рядом вспомогательных операций. Эскизную технологическую схему хлорирования можно представить в следующем виде:

Перегонка реакционной массы и абсорбция газов рассматриваются в курсе «Основные процессы и аппараты химической технологии». В предлагаемом курсе рассматриваются три первых стадии и их аппаратурное оформление.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.


источники:

http://www.gaps.tstu.ru/win-1251/lab/sreda/gapsht/6/cl.html

http://acetyl.ru/f/r018.php