Уравнение реакции из этилового спирта получить альдегид

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e12f61c9aa1417e • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Уравнение реакции из этилового спирта получить альдегид

1. Окисление спиртов

В лаборатории карбонильные соединения получают окислением спиртов в жестких условиях в присутствии сильных окислителей (дихромата калия К2Cr2O7 или перманганата калия КМnО4) в серной кислоте Н2SO4. В качестве окислителя можно использовать оксид меди (II) при нагревании.

При окислении первичных спиртов образуются альдегиды:

Видеоопыт «Окисление этилового спирта оксидом меди (II)»

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот:

Чтобы предотвратить превращение альдегида в кислоту, его отгоняют в ходе реакции (tкип альдегида, не образующего межмолекулярные водородные связи, ниже tкип спирта и кислоты).

При окислении вторичных спиртов образуются кетоны:

Присоединение воды к ацетилену происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта (енола), который изомеризуется в уксусный альдегид (в случае ацетилена):

Кетоны получают при гидратации других гомологов ряда алкинов:

Раньше это был промышленный способ получения карбонильных соединений. В настоящее время этот способ находит ограниченное применение из-за загрязнения получаемых продуктов токсичными солями ртути и относительной дороговизны.

3. Каталитическое окисление алкенов кислородом воздуха

Этим способом в промышленности получают уксусный альдегид — окислением этилена кислородом воздуха (Вакер-процесс).

Эта реакция протекает в присутствии катализатора – смеси PdCl2 и CuCl2 и температуре 100 0 С:

Этим экономичным способом получают низшие альдегиды и кетоны.

Этот промышленный способ более перспективен, чем гидратация алкинов, при которой используются токсичные ртутные катализаторы.

4. Каталитическое дегидрирование спиртов

В промышленности альдегиды и кетоны получают дегидрированием спиртов, пропуская пары спирта над нагретым катализатором (Cu, соединения Ag, Cr или Zn).

Первичные спирты окисляются до альдегидов, а вторичные – до кетонов.

Этот способ получения объясняет суть названия «альдегид» (от лат. alconol dehydrogenatum – спирт, от которого «отняли» водород).

Этот способ позволяет получать карбонильные соединения, в особенности альдегиды, без побочных продуктов окисления.

В 1835 г. немецкий химик Ю. Либих выделил индивидуальное вещество, молекула которого содержала на два атома водорода меньше, чем этанол. Ученый установил состав этого соединения – С2Н4О и назвал его альдегидом (от лат. al conol dehyd rogenatum — т.е. дегидрированный спирт, «спирт, лишенный водорода»).

В 1867 г. немецкий химик-органик А. Гофман, пропуская пары метилового спирта над раскаленной платиновой спиралью, получил газообразное вещество состава СН2О, молекула которого отличается от открытого Либихом альдегида на группу -СН2— . Именно это соединение (муравьиный альдегид) открывает гомологический ряд альдегидов.

5. Щелочной гидролиз дигалогеналканов

Реакция протекает при действии водных растворов щелочей на дигалогензамещенные углеводороды, содержащие два атома галогена у одного и того же атома углерода.

При щелочном гидролизе дигалогеналканов образуются двухатомные спирты, в которых две группы ОН соединены с одним атомом углерода. Эти вещества неустойчивы и при отщеплении воды, превращаются в карбонильные соединения.

Если два атома галогена связаны с первичным атомом углерода, то образуются альдегиды:

При гидролизе дигалогеналканов, содержащих атомы галогена у вторичного атома углерода, образуются кетоны:

Это лабораторный способ получения карбонильных соединений.

6. Пиролиз солей карбоновых кислот

При пиролизе (термическое разложение) кальциевых, бариевых солей карбоновых кислот образуются соответствующие карбонильные соединения. Из смешанной соли муравьиной и другой карбоновой кислоты получают альдегиды, а в остальных случаях образуются кетоны.

Это лабораторный способ получения карбонильных соединений.

7. Кумольный способ получения ацетона (наряду с фенолом)

Простейший кетон – ацетон – получают кумольным методом вместе с фенолом:

Это промышленный способ получения ацетона.

Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

Получение формальдегида

1. Окисление метана

Формальдегид в промышленности можно получить окислением метана кислородом воздуха при высоких температурах с использованием катализатора:

2. Окисление метанола

Основной промышленный способ получения формальдегида – окисление метанола с использованием серебряного катализатора при температуре 650 0 С и атмосферном давлении:

Реакция происходит на раскаленной серебряной сетке, через которую проходят пары ментола, смешанные с воздухом. Реакция настолько экзотермична, что выделяющейся в ходе ее теплоты достаточно для того, чтобы поддерживать сетку в раскаленном состоянии.

В настоящее время разработан перспективный способ высокотемпературного окисления метанола с использованием железомолибденовых катализаторов:

Уксусный альдегид: свойства, получение, применение

Общая характеристика

Уксусный альдегид имеет несколько названий: ацетальдегид, этаналь, метилформальдегид. Это соединение является альдегидом уксусной кислоты и этанола. Его структурная формула выглядит следующим образом: CH3-CHO.
Рис. 1. Химическая формула уксусного альдегида.

Особенностью этого альдегида является то, что он встречается как в природе, так и производится искусственным путем. В промышленности объем производства этого вещества может составлять до 1 миллиона тонн в год.

Этаналь встречается в пищевых продуктах, таких как кофе, хлеб, а также это вещество синтезируют растения в процессе метаболизма.

Уксусный альдегид представляет собой жидкость без цвета, но отличающуюся резким запахом. Растворим в воде, спирте и эфире. Является ядовитым.

Рис. 2. Уксусный альдегид.

Жидкость закипает при достаточно низкой температуре – 20,2 градуса по Цельсию. Из-за этого возникают проблемы с ее хранением и транспортировкой. Поэтому хранят вещество в виде паральдегида, а ацетальдегид из него получают в случае необходимости путем нагревания с серной кислотой (либо с любой другой минеральной кислотой). Паральдегид – это циклический тример уксусной кислоты.

Строение альдегидов и кетонов


Альдегиды

– органические вещества, молекулы которых содержат карбонильную группу
С=O , соединенную с атомом водорода и углеводородным радикалом. Общая формула альдегидов имеет вид:
В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

– органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой

. В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Природа двух основных веществ


Уксусный альдегид (этаналь, ацетальдегид, метилформальдегид)
Ацетальдегид (этаналь) распространен в природе, встречается в продуктах и в большинстве растений. А также этаналь является составляющей автомобильных выхлопов и дыма от сигарет, поэтому он относится к категории сильных ядовитых веществ. Его можно синтезировать искусственно разными способами. Самый популярный метод – получить уксусный альдегид из этилового спирта. В качестве катализатора используют оксид меди (или серебра). В результате реакции получаются альдегид, водород и вода.

Этиловый спирт (этанол) представляет собой обычный всем известный пищевой C2H5OH. Он широко применяется в изготовлении алкогольных напитков, в медицине для дезинфекции, при производстве бытовой химии, духов, средств гигиены и прочего.

Этиловый спирт в природе не встречается, его производят с помощью химических реакций. Основные способы получения вещества следующие:


Спиртовое брожение

  • Брожение: определенные фрукты или овощи подвергают действию дрожжевого грибка.
  • Изготовление в промышленных условиях (применение серной кислоты).

Второй способ дает более высокую концентрацию этанола. С помощью первого варианта получится достичь только около 16% этого вещества.

Реакция серебряного зеркала

Окисление альдегидов оксидом серебра является самой показательной качественной реакцией на соответствующую форму функциональной группы. Свое название эта реакция получила благодаря тонкому серебряному налету на стенках пробирки, образующемуся в ходе этой реакции.

Суть ее заключается во взаимодействии альдегида R-СОН с аммиачным раствором оксида серебра(I), который представляет собой растворимое комплексное соединение [Ag(NH3)2]OH и носит название реактив Толленса. Реакцию осуществляют при температурах, близких к температуре кипения воды (80–100 °С). При этом происходит окисление альдегидов до соответствующих им карбоновых кислот, а окислитель восстанавливается до металлического серебра, выпадающего в осадок.



Способы получения ацетальдегида из этанола

Процесс получения ацетальдегида из этилового спирта происходит по следующей формуле: C2H5OH + CuO = CH3CHO + Cu + H2O

В данном случае используют этанол и оксид меди, под воздействием высокой температуры происходит реакция окисления и получается уксусный альдегид.

Существует также другой метод получения альдегида – дегидрирование спирта. Он появился еще около 60 лет назад и пользуется популярностью до сих пор. Дегидрирование имеет множество положительных качеств:


Реакции дегидрирования

  • нет выделений ядовитых токсинов, отравляющих атмосферу;
  • комфортные и безопасные условия реакции;
  • в процессе реакции выделяется водород, который тоже можно использовать;
  • не нужно тратиться на дополнительные составляющие – достаточно одного этилового спирта.

Получение альдегида данным методом происходит так: этанол нагревают до четырехсот градусов и каталитическим способом из него выходит водород. Формула процесса выглядит так: C2H5OH ͢ CH3CHO + H2.

Отщепление водорода происходит благодаря высокой температуре и низкому давлению. Как только температура упадет, а давление возрастет, H2 вернется и ацетальдегид снова станет спиртом.

При использовании метода дегидратации применяют также медный или цинковый катализатор. Медь в данном случае — очень активное вещество, способное терять активность во время реакции. Поэтому делают смесь из меди, оксидов кобальта и хрома, а затем наносят ее на асбест. Это дает возможность провести реакцию при температуре 270–300°C. В этом случае трансформация этанола достигает от 34 до 50%.

Определение оптимального метода


Окисление спиртов

Если сравнивать метод окисления спирта с методом дегидратации, то второй обладает явным преимуществом, так как при нем образуется намного меньше токсических веществ и одновременно фиксируется наличие в контактных газах высокой концентрации этаналя. Эти газы при дегидратации содержат лишь ацетальдегид и водород, а при окислении имеют в составе разбавленный азотом этанол. Поэтому получить ацетальдегид из контактных газов легче и потерь его будет намного меньше, чем при окислительном процессе.


Уксусная кислота

Еще одним важным качеством метода дегидратации является то, что полученное вещество применяют для производства уксусной кислоты. Для этого берут сульфат ртути и воду. Получается реакция по следующей схеме: CH3CHO + HgSO4 + H2O = CH3COOH + H2SO4 + Hg.

Для завершения реакции добавляют сульфат железа, который окисляет ртуть. Чтобы выделить уксусную кислоту, полученный раствор фильтруют и добавляют щелочной раствор.

Если нет готового HgSO4 (неорганическое соединение из соли металла и серной кислоты), то его готовят самостоятельно. Необходимо в 4 части серной кислоты добавить 1 часть оксида ртути.

Биохимия [ править | править код ]

В печени имеется фермент алкогольдегидрогеназа, который окисляет этанол в ацетальдегид, который затем окисляется в безопасную уксусную кислоту посредством ацетальдегиддегидрогеназы. Эти две реакции окисления связаны с восстановлением NAD + в NADH [12] . В мозгу алкогольдегидрогеназа не играет особой роли в окислении этанола в ацетальдегид, это делает энзим каталаза. Конечные шаги алкогольной ферментации в бактериях, растениях и дрожжах включают конверсию пирувата в ацетальдегид под действием пируват декарбоксилазы, после чего — конверсию ацетальдегида в этанол. Последняя реакция снова катализируется алкогольдегидрогеназой, но уже в обратном направлении.

Оксопроизводные углеводородов Лабораторная работа №4

  • •02080165 “Экология”, 11090165 “Водные биоресурсы и аквакультура”, 08040165 “Товароведение и экспертиза товаров”, колледж “Технолог”
  • •Часть I
  • •Введение
  • •Правила техники безопасности при работе в химической лаборатории
  • •Правила техники безопасности при работе с кислотами и щелочами
  • •Правила техники безопасности при работе с бромом
  • •Правила техники безопасности при работе с металлическими натрием и калием
  • •Техника безопасности при работе с легковоспламеняющимися жидкостями
  • •Техника безопасности при работе под вакуумом
  • •Меры безопасности при утечке газа и тушении локального пожара и горящей одежды
  • •Оказание первой медицинской помощи при ожогах и отравлениях химическими веществами
  • •1. Качественный элементный анализ органических соединений Лабораторная работа № 1
  • •Опыт 1. Обнаружение углерода пробой на обугливание
  • •Опыт 2. Обнаружение углерода и водорода окислением вещества оксидом меди (II)
  • •Органическом веществе:
  • •Опыт 5. Определение галогенов в органических веществах
  • •2. Свойства углеводородов алифатического и ароматического ряда Лабораторная работа № 2 Опыт 6. Реакция углеводородов с бромом
  • •Опыт 7. Отношение углеводородов к окислению( реакция Вагнера)
  • •Опыт 8. Взаимодействие углеводородов с серной кислотой
  • •Опыт 9. Получение ацетилена и исследование его свойств
  • •3. Гидроксипроизводные углеводородов Лабораторная работа № 3
  • •3.1. Алифатические спирты
  • •Опыт 10. Образование и свойства этилата натрия
  • •Опыт 11. Получение глицерата меди
  • •Опыт 12. Реакции окисления этилового спирта
  • •Опыт 13. Получение простого диэтилового эфира
  • •3.2. Фенолы Осторожно! Фенолы вызывают ожоги кожи Опыт 14. Образование и разложение фенолятов
  • •Опыт 15. Взаимодействие фенола с бромной водой
  • •Опыт 16. Окисление фенола
  • •Опыт 17. Взаимодействие фенолов с хлоридом железа (III)
  • •4. Оксопроизводные углеводородов Лабораторная работа №4
  • •4.1. Алифатические альдегиды и кетоны
  • •Опыт 18 . Получение уксусного альдегида окислением этилового спирта дихроматом калия
  • •Опыт 19. Реакции окисления альдегидов
  • •Опыт 20. Альдольная и кротоновая конденсация уксусного альдегида и его осмоление
  • •Опыт 21. Получение ацетона пиролизом ацетата кальция
  • •4.2.Ароматические карбонильные соединения Опыт 22. Окисление бензальдегида (реакция «серебряного зеркала»)
  • •Опыт 23. Получение фенилгидразона бензойного альдегида
  • •Опыт 24. Получение бензальанилина (основание Шиффа)
  • •Опыт 26. Получение высших жирных кислот и их свойства
  • •Опыт 27. Взаимодействие бензойной и салициловой кислот с бромной водой
  • •Опыт 28. Отношение бензойной кислоты к перманганату калия
  • •Опыт 29. Свойства олеиновой кислоты
  • •5.2. Двухосновные карбоновые кислоты Опыт 30. Свойства щавелевой кислоты
  • •Опыт 31. Получение ангидрида янтарной кислоты
  • •Опыт 32. Образование фталевого ангидрида
  • •5.3. Сложные эфиры предельных одноосновных кислот Опыт 33. Получение этилацетата
  • •Опыт 34. Гидролиз этилацетата
  • •5.4. Жиры и масла Опыт 35. Определение непредельности растительного масла реакцией с бромом
  • •Опыт 36. Взаимодействие растительного масла с водным раствором перманганата калия (реакция Вагнера)
  • •Список рекомендуемой литературы

Как можно получить уксусный альдегид из этилового спирта? Как известно, наука не стоит на месте и чуть ли не каждый день в мире открываются миллионы новых химических реакций и соединений. Наибольший объем занимают именно органические. Они разделяются на группы, одной из которых являются альдегиды.

Взаимодействие с раствором йода

Для окисления альдегидных групп иногда применяется раствор йода в присутствии щелочи. Особое значение этот реактив имеет в процессе окисления углеводов, поскольку действует очень избирательно. Так под его влиянием D-глюкоза превращается в D-глюконовую кислоту.

Йод в присутствии щелочей образует гипойодид (весьма сильный окислитель): I2 + 2NaOΗ –> NaIO + NaI + Н2О.

Под действием гипойодида формальдегид превращается в метановую кислоту: ΗСОΗ + NaIO + NaOΗ –> ΗCOONa + NaI + Н2О.

Окисление альдегидов йодом используют в аналитической химии для определения количественного их содержания в растворах.

Сущность двух основных веществ

Уксусный альдегид имеет и другое название ацетальдегид, этанал или метилформальдегид. Его формула имеет вид: CH3-CHO.

Если рассматривать соединение с точки зрения химических свойств, то вещество представляется собой жидкость, не имеющую цвет, но с едким резким запахом. Отлично растворяется в воде и имеет температуру кипения в 20ºС.

Получить уксусный альдегид можно нагрев паральдегид (триммер) с кислотой неорганического происхождения. Второй способ, через окисление этилена или по-другому его называют процесс Вакера. Окислителем является хлорид палладия

Самый популярный способ, с помощью которого возможно получение альдегида – окисление этилового спирта, но с использованием меди или серебра в качестве катализатора. После дегидратации, помимо альдегида образуется также водород и вода.

Это один из самых часто встречаемых соединений, которое можно найти в любом продукте, начиная от хлебобулочных изделий, заканчивая плодами растений. Он является составной частью дыма от сигарет и автомобильных выхлопов. Именно поэтому он относится к категории сильно ядовитых веществ, которые загрязняют токсинами атмосферу.

Этанол или этиловый спирт является простым спиртом, обозначается как C2H5OH, относится к категории одноатомных спиртов. Представляет собой жидкость, летучего состава и горючего.

Важнейшая составляющая алкогольных напитков, оказывает угнетающий эффект на нервную систему человека, при этом успокаивает его. Является составной частью топливной жидкости, многих растворителей и широко применяется в медицине, как средство дезинфекции и антисептик. Из этилового спирта готовят настойки, добавляют в бытовую химию, антифризы и омыватели. Паста для чистки зубов, парфюм и гели для душа состоят из спирта.

Он является результатом химических реакций, т.к. в природе не встречается.

Основные пути получения:

  1. Брожение. Продукты сельскохозяйственной деятельности подвергают воздействию дрожжей, вследствие чего и выделяется этанол, но его концентрация не так высока, не достигает и 15%.
  2. Производство в промышленных условиях. После уникальных автоматизированных этапов получения этилового спирта, получается жидкость с высокой концентрацией.

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль.

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он

и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Окисление диоксидом селена

В отличие от предыдущих реактивов, под действием диоксида селена альдегиды превращаются в дикарбонильные соединения, а из формальдегида образуется глиоксаль. Если рядом с карбонилом расположены метиленовые или метильные группы, то они могут превращаться в карбонильные. Как растворитель для SeO2 обычно используют диоксан, этанол или ксилол.

По одной из методик реакцию проводят в трехгорлой колбе, соединенной с мешалкой, термометром и обратным холодильником. К исходному веществу, взятому в количестве 0,25 моль, каплями прибавляют раствор 0,25 моль диоксида селена в 180 мл диоксана, а также 12 мл Н2О. Температура не должна превышать 20 °C (при необходимости колбу охлаждают). После этого при постоянном перемешивании раствор кипятят в течении 6 часов. Далее горячий раствор фильтруют для отделения селена и промывают осадок диоксаном. После вакуумной отгонки растворителя остаток фракционируют. Основную фракцию отбирают в широком температурном интервале (20-30 °C) и повторно ректифицируют.

Шпаргалка


Таблица Менделеева


Таблица растворимости

Related Posts

Вопрос/ответ

Что вреднее курить или пить

Злоупотребление алкогольными изделиями и курение табака – это самые распространенные вредные привычки человека. Огромное количество взрослых граждан нашей страны ежедневно умирает по причине заболеваний, что были вызваны негативным влиянием как сигарет, так и водки или Read more…

Вопрос/ответ

Что хуже алкоголь или трава

Джозеф Браунштайн Вопрос о том, что вреднее для здоровья – марихуана или алкоголь, недавно вновь стал предметом обсуждений после заявления, сделанного президентом США Бараком Обамой в интервью журналу «New Yorker». «Как уже было отмечено, я Read more…

Химические свойства карбоновых кислот

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атома­ми водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

с образованием катионов водо­рода и анионов кислотного остатка:

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их — слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объяс­няется диссоциацией на катионы водорода и анио­ны кислотных остатков.

Очевидно, что присутствием в молекулах кар­боновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие ха­рактерные свойства.

2. Взаимодействие с металлами

, стоящими в электрохимическом ряду напряжений до водо­рода:

Так, железо восстанавливает водород из уксус­ной кислоты:

3. Взаимодействие с основными оксидами

с об­разованием соли и воды:

4. Взаимодействие с гидроксидами металлов

с образованием соли и воды (реакция нейтрализации):

5. Взаимодействие с солями более слабых кис­лот

с образованием последних. Так, уксусная кис­лота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

6. Взаимодействие карбоновых кислот со спир­тами

с образованием сложных эфиров — реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спирта­ми катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при уда­лении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимо­действие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кис­лотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например, глице­рин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в моле­кулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остат­ка.

7. Реакции присоединения по кратной связи

— в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода — ги­дрирование. Для кислоты, содержащей в радикале одну л-связь, можно записать уравнение в общем виде:

Так, при гидрировании олеиновой кислоты об­разуется предельная стеариновая кислота:

Непредельные карбоновые кислоты, как и дру­гие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акрило­вая кислота обесцвечивает бромную воду:

8. Реакции замещения (с галогенами)

— в них способны вступать предельные карбоновые кисло­ты. Например, при взаимодействии уксусной кис­лоты с хлором могут быть получены различные хлорпроизводные кислоты:

Химические свойства карбоновый кислот — конспект

Примечания

  1. en:Wacker process
  2. March, J. «Organic Chemistry: Reactions, Mechanisms, and Structures» J. Wiley, New York: 1992. ISBN 0-471-58148-8 .
  3. Sowin, T. J.; Melcher, L. M. «Acetaldehyde» in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI :10.1002/047084289
  4. en:Strecker amino acid synthesis
  5. Kendall, E. C. McKenzie, B. F. (1941), «dl-Alanine», Org. Synth.; Coll. Vol. 1: 21
  6. Wittig, G.; Hesse, A. (1988), «Directed Aldol Condensations: β-Phenylcinnamaldehyde», Org. Synth.; Coll. Vol. 6: 901
  7. Frank, R. L.; Pilgrim, F. J.; Riener, E. F. (1963), «5-Ethyl-2-Methylpyridine», Org. Synth.; Coll. Vol. 4: 451
  8. Adkins, H.; Nissen, B. H. (1941), «Acetal», Org. Synth.; Coll. Vol. 1: 1
  9. en:Monsanto process
  10. en:Cativa process
  11. NAD+ to NADH Hipolito, L.; Sanchez, M. J.; Polache, A.; Granero, L. Brain metabolism of ethanol and alcoholism: An update. Curr. Drug Metab. 2007, 8, 716-727
  12. Study Points to Acetaldehyde-Nicotine Combination in Adolescent Addiction
  13. Nicotine’s addictive hold increases when combined with other tobacco smoke chemicals, UCI study finds
  14. «Mitochondrial ALDH2 Deficiency as an Oxidative Stress». Annals of the New York Academy of Sciences 1011: 36-44. April 2004. doi:10.1196/annals.1293.004. PMID 15126281 . Retrieved 2009-08-13.
  15. Nakamura, K.; Iwahashi, K.; Furukawa, A.; Ameno, K.; Kinoshita, H.; Ijiri, I.; Sekine, Y.; Suzuki, K.; Iwata, Y.; Minabe, Y.; Mori, N. Acetaldehyde adducts in the brain of alcoholics. Arch. Toxicol. 2003, 77, 591.
  16. Chemical Summary For Acetaldehyde, US Environmental Protection Agency
  17. DNA and chromosome damage induced by acetaldehyde in human lymphocytes in vitro
  18. ^ Nicholas S. Aberle, II, Larry Burd, Bonnie H. Zhao and Jun Ren (2004). «Acetaldehyde-induced cardiac contractile dysfunction may be alleviated by vitamin В1 but not by vitamins B6 or B12». Alcohol & Alcoholism 39 (5): 450-454. doi:10.1093/alcalc/agh085.
  19. Nils Homann, Felix Stickel, Inke R. König, Arne Jacobs, Klaus Junghanns, Monika Benesova, Detlef Schuppan, Susanne Himsel, Ina Zuber-Jerger, Claus Hellerbrand, Dieter Ludwig, Wolfgang H. Caselmann, Helmut K. Seitz Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers International Journal of Cancer Volume 118, Issue 8, Pages 1998-2002
  20. Smoking. (2006). Encyclopædia Britannica. Accessed 27 Oct 2006.

Уксусный альдегид (другие названия: ацетальдегид, метилформальдегид, этаналь) — принадлежащее к классу альдегидов. Это вещество имеет важное значение для человека, оно встречается в кофе, хлебе, спелых фруктах и овощах. Синтезируется растениями. Встречается в природе и производится в больших количествах человеком. Формула уксусного альдегида: CH3-CHO.

1. Уксусный альдегид — это жидкость без цвета, имеющая резкий неприятный запах. 2. Хорошо растворяется в эфире, спирте и воде. 3. составляет 44,05 грамм/моль. 4. Плотность равна 0,7 грамм/сантиметр³.

1. Температура плавления равна -123 градусам. 2. Температура кипения составляет 20 градусов. 3. равна -39 градусам. 4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в (так называемый процесс Вакера). Так выглядит эта реакция: 2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования на серебряном или медном катализаторе.

Применение уксусного альдегида

Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества. — Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто. — Метилформальдегид — важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду. — Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться. — Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество — это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид

Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента — алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

Данное вещество токсично. Является загрязнителем атмосферы при курении или от выхлопов в автомобильных пробках.

Уксусный альдегид относится к органическим соединениям и входит в класс альдегидов. Какими свойствами обладает это вещество, и как выглядит формула уксусного альдегида?

Приручение похмелья

Не меньше, чем нарушений обмена веществ, вызванных похмельем, пожалуй, только список народных средств для его лечения. Чего только не пробовали для облегчения состояния? Компрессы для ног, все сорта черного, зеленого и цветочного чая (в особенности ромашкового), рассол, соленые и маринованные продукты (вот чего на самом деле следует избегать человеку, чья потревоженная этиловым спиртом и его метаболитами слизистая желудка будет крайне отрицательно относиться к острой и кислой пище), теплое молоко с медом, порция спиртного с небольшим градусом, витамины, занятия спортом, куриный бульон и т. д. Практически все эти средства испытывались клинически, и оказалось, что все они бесполезны. Почему же мы считаем, что они помогают? Да потому что любое, даже самое суровое похмелье рано или поздно проходит и без лечения.

Тем не менее некоторые симптомы похмелья могут облегчаться медикаментозно — например, кислотные буферы для снятия тошноты или симптомов гастрита.

От головной боли часто принимают аспирин и ибупрофен, но эти лекарства стимулируют образование желудочного сока, поэтому применять их от головной боли при наличии тошноты и рези в желудке явно не стоит — голова, может, и пройдет, а вот проблемы со стороны желудочно-кишечного тракта только усилятся. Еще одним популярным компонентом болеутоляющих средств является парацетамол, однако ферменты монооксигеназы, вырабатывающиеся при злоупотреблении человеком алкоголя, могут способствовать превращению парацетамола в канцерогенное вещество. Несмотря на то что окисление этанола кислородом, катализируемое монооксигеназами, играет в метаболизме алкоголя лишь второстепенное значение, применять парацетамол для борьбы с похмельем не рекомендуется.

Клинические испытания также показали, что в борьбе с похмельем бесполезны антагонисты серотонина, бета-блокаторы и кофеин. Опять же: если похмелье отрицательно влияет на пищеварительную систему, о чашечке кофе до прекращения симптомов недуга следует забыть, а вот если похмелье уже сопровождается расстройством желудка и диареей, таблетка активированного угля может оказаться нелишней.

Таким образом приходится признать, что от похмелья есть только одно действительно веками проверенное средство. Да, интенсивное потребление воды спасет от дегидратации организма, фруктовый сок — от дефицита глюкозы в крови, болеутоляющие позволят унять отбойные молотки, бьющие изнутри черепной коробки, бульон поможет компенсировать потери ионов, а прогулка на свежем воздухе нормализует кровообращение. Тем не менее надежнее всего не бороться с похмельем, а не допустить его появления, а это означает одно — знать чувство меры.


источники:

http://himija-online.ru/organicheskaya-ximiya/aldegidy-i-ketony/poluchenie-aldegidov-i-ketonov.html

http://narkopro.ru/alkogolizm/uksusnyj-aldegid.html