Уравнение реакции карбоновой кислоты с гидроксидом кальция

В результате взаимодействия предельной одноосновной карбоновой кислоты с гидроксидом кальция получена соль, содержащая 30,77% кальция по массе

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,300
  • гуманитарные 33,630
  • юридические 17,900
  • школьный раздел 607,261
  • разное 16,836

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Уравнение реакции карбоновой кислоты с гидроксидом кальция

Для насыщенных монокарбоновых кислот характерна высокая реакционная способность. Она определяется в основном наличием в их структуре карбоксильной группы.

Карбоксильная группа представляет собой сопряженную систему, в которой неподеленная пара электронов атома кислорода гидроксильной группы вступает в сопряжение с π-электронами карбонильной группы (р,π-сопряжение). Вследствие +М-эффекта со стороны группы –ОН электронная плотность в сопряженной системе смещена в сторону атома кислорода карбонильной группы неподеленные пары электронов которого не участвуют в сопряжении. В результате смещения электронной плотности связь О-Н оказывается сильно поляризованной (по сравнению со спиртами и фенолами), что приводит к появлению в карбоксильной группе ОН-кислотного центра.

Но в то же время за счет +М-эффекта со стороны группы –ОН в молекулах карбоновых кислот в некоторой степени уменьшается частичный положительный заряд (δ+) на атоме углерода карбонильной группы по сравнению с альдегидами и кетонами.

Кроме того, вследствие –I-эффекта карбоксильной группы в молекуле карбоновой кислоты происходит смещение электронной плотности с углеводородного остатка, что приводит к появлению СН-кислотного центра у α-углеродного атома.

Исходя из строения, в молекулах карбоновых кислот можно выделить реакционные центры, определяющие возможные реакции с их участием.

1. Кислотные свойства кабоновых кислот проявляются в реакциях с основаниями за счет ОН-кислотного центра.

2. С участием электрофильного центра (атома углерода карбоксильной группы) происходят реакции нуклеофильного замещения в карбоновых кислотах и их функциональных производных.

3. Основный центр – карбонильная группа (оксогруппа) со своей электронной парой – протонируется на стадии катализа в реакциях нуклеофильного замещения.

4. СН-кислотный центр определяет возможность замещения атома водорода в алкильном радикале и реакции конденсации.

Карбоновые кислоты вступают в реакции с различными веществами и образуют разнообразные соединения, среди которых большое значение имеют функциональные производные, т.е. соединения, полученные в результате реакций по карбоксильной группе.

I. Реакции с разрывом связи О-Н

(кислотные свойства карбоновых кислот обусловлены подвижностью атома водорода карбоксильной группы и их способностью отщеплять его в виде протона)

Предельные монокарбоновые кислоты обладают всеми свойствами обычных кислот.

Карбоновые кислоты изменяют окраску индикаторов.

1. Диссоциация

В водных растворах монокарбоновые кислоты ведут себя как одноосновные кислоты: они диссоциируют с образованием протона (Н + ) и кислотного остатка (карбоксилат-иона):

Уравнение реакции, учитывающее участие молекулы воды:

Растворы карбоновых кислот изменяют окраску индикаторов, имеют кислый вкус, проводят электрический ток.

В карбоксилат-ионе оба атома кислорода равноценны, а отрицательный заряд равномерно делокализован (рассредоточен) между ними.

В результате делокализации отрицательного заряда карбоксилат-ион обладает высокой устойчивостью. Сила кислоты определяется устойчивостью образующегося аниона, поэтому карбоновые кислоты превосходят по кислотным свойствам спирты и фенолы, где возможность делокализации заряда в анионе меньшая.

Тем не менее, монокарбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду насыщенных кислот является муравьиная кислота, в которой группа –СООН связана с атомом водорода.

Заместители, присутствующие в молекуле карбоновой кислоты, сильно влияют на ее кислотность вследствие оказываемого ими индукционного эффекта.

Алкильные радикалы, связанные с карбоксильной группой, обладают положительным индукционным эффектом (+І). Они отталкивают от себя электронную плотность, тем самым уменьшая частичный положительный заряд (δ+) на атоме углерода карбоксильной группы. Положительный индукционный эффект возрастает по мере увеличения длины углеводородного радикала, что в свою очередь ослабляет полярность связи О-Н. Алкильные группы понижают кислотность.

В гомологическом ряду предельных монокарбоновых кислот кислотные свойства уменьшаются от муравьиной кислоты к высшим карбоновым кислотам.

Такие заместители, как хлор или фенильный радикал, оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индукционный эффект ( I). Оттягивание электронной плотности от карбоксильного атома водорода приводит к повышению кислотности карбоновой кислоты.

Карбоновые кислоты – слабые электролиты. Равновесие процесса диссоциации сильно смещено влево, об этом свидетельствует тот факт, что даже сильноразбавленные водные растворы кислот имеют резкий запах.

Видеоопыт «Растворимость в воде различных карбоновых кислот»

Видеоопыт «Карбоновые кислоты — слабые электролиты»

2. Образование солей

Карбоновые кислоты проявляют все свойства минеральных кислот. Карбоновые кислоты при взаимодействии с активными металлами, основными оксидами, основаниями и солями слабых кислот образую соли.

а) взаимодействие с активными металлами

Цинк и уксусная кислота

Карбоновые кислоты реагируют с металлами, стоящими в ряду напряжений до водорода.

Видеоопыт «Взаимодействие уксусной кислоты с металлами»

б) взаимодействие c ос­но­ва­ни­я­ми (реакция нейтрализации)

Видеоопыт «Взаимодействие уксусной кислоты с раствором щелочи»

в) взаимодействие с ос­нов­ны­ми и амофтерными ок­си­да­ми

Оксид меди(II) и уксусная кислота

Видеоопыт «Взаимодействие уксусной кислоты с оксидом меди (II)»

г) взаимодействие с со­ля­ми более сла­бых кис­лот

Видеоопыт «Взаимодействие уксусной кислоты с карбонатом натрия»

д) взаимодействие с аммиаком или гидроксидом аммония

Названия солей составляют из названий остатка RCOO– (карбоксилат-иона) и металла. Например, CH3COONa – ацетат натрия, (HCOO)2Ca – формиат кальция, C17H35COOK – стеарат калия и т.п.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

Видеоопыт «Свойства карбоновых кислот»

Свойства солей карбоновых кислот

1) Взаимодействие с сильными кислотами

Карбоновые кислоты – слабые, поэтому сильные минеральные кислоты вытесняют их из соответствующих солей.

Из неорганических кислот лишь угольная кислота слабее рассматриваемых кислот и может вытесняться ими из её солей — карбонатов и гидрокарбонатов.

Качественная реакция на ацетат-ион СН3СОО — ! Запах уксусной кислоты.

2) Гидролиз по аниону

Натриевыс и калиевые соли карбоновых кислот в водных растворах находятся частично в гидролизованном состояния.

Этим объясняется щелочная реакция мыльного раствора.

Видеоопыт «Гидролиз ацетата натрия»

3) Электролиз солей активных металлов (реакция Кольбе)

Одним из применений солей карбоновых кислот является электролиз их водных растворов, в результате которого образуются насыщенные углеводороды:

Электролизом раствора соли карбоновой кислоты можно получить алкан с удлиненной цепью.

4) Пиролиз солей карбоновых кислот

При пиролизе (термическое разложение) кальциевых, бариевых солей карбоновых кислот образуются соответствующие карбонильные соединения. Из смешанной соли муравьиной и другой карбоновой кислоты получают альдегиды, а в остальных случаях образуются кетоны:

4) Декарбоксилирование солей щелочных металлов (реакция Дюма)

В процессе сплавления солей карбоновых кислот с твердой щелочью происходит расщепление углеродной связи и образуются алканы с числом атомов углерода на один меньше, чем у исходной кислоты:

II. Реакции с разрывом связи C

Пониженная электронная плотность (δ+) на атоме углерода в карбоксильной группе обусловливает возможность реакций нуклеофильного замещения группы –ОН с образованием функциональных производных карбоновых кислот (сложных эфиров, амидов, ангидридов и галогенангидридов).

1. Взаимодействие со спиртами с образованием сложных эфиров (реакция этерификации)

Карбоновые кислоты при нагревании в присутствии кислотного катализатора реагируют со спиртами, образуя сложные эфиры:

Механизм этой реакции был установлен методом меченых атомов. С этой целью использовали спирт, меченный изотопом кислорода 18 О. После реакции изотоп кислорода был обнаружен в молекуле сложного эфира.

2. Взаимодействие с аммиаком с образованием амидов

Амиды получают из карбоновых кислот и аммиака через стадию образования аммониевой соли, которую затем нагревают:

Вместо карбоновых кислот чаще используют их галогенангидриды:

Амиды образуются также при взаимодействии карбоновых кислот (их галогенангидридов или ангидридов) с органическими производными аммиака (аминами):

Амиды играют важную роль в природе. Молекулы природных пептидов и белков построены из α-аминокислот с участием амидных групп — пептидных связей.

3. Взаимодействие с галогенидами фосфора или тионилхлоридом с образованием галогенангидридов карбоновых кислот

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты –галогениды фосфора PCl3, PCl5, тионилхлорид SOCl2.

Для получения хлорангидридов чаще используют тионилхлорид, так как в этом случае образуются газообразные побочные продукты.

Галогенангидриды карбоновых кислот — весьма реакционноспособные вещества, широко применяемые в органическом синтезе.

4. Образование ангидридов кислот (межмолекулярная дегидратация)

Ангидриды кислот образуются в результате межмолекулярной дегидратации кислот при их нагревании в присутствии оксида фосфора (V) в качестве водоотнимающего средства.

Вещества, которые образуются при отщеплении воды от органических кислот, называются ангидридами.

Смешанные ангидриды карбоновых кислот можно получить при взаимодействии хлорангидрида одной кислоты с безводной солью другой карбоновой кислоты:

Муравьиная кислота не образует ангидрида. Дегидратация ее приводит к образованию оксида углерода (II).

Наиболее широкое применение находит уксусный ангидрид. Большое количество его расходуется для синтеза ацетилцеллюлозы, которая идет на изготовление искусственного шелка. Уксусный ангидрид используется также для получения аспирина.

III. Реакции с разрывом связи C-Н у ɑ-углеродного атома

(реакции с участием радикала)

1. Реакции замещения (с галогенами)

Атомы водорода у ɑ-углеродного атома более подвижны, чем другие атомы водорода в радикале кислоты и могут замещаться на атомы галогена с образование ɑ-галогенкарбоновых кислот.

Карбоновые кислоты взаимодействуют с галогенами в присутствии красного фосфора (реакция Геля-Фольгарда-Зелинского):

2-Хлорпропионовая кислота – промежуточный продукт для получения аминокислот. Действием на 2-хлорпропионовую кислоту аммиака получают 2-аминопропионовую кислоту (аланин):

При пропускании хлора через кипящую уксусную кислоту в присутствии красного фосфора образуется кристаллическое вещество – хлоруксусная кислота:

Дальнейшее хлорирование приводит к образова­нию дихлоруксусной и трихлоруксусной кислот:


IV. Реакции окисления (горение)

В атмосфере кислорода карбоновые кислоты сгорают с образованием оксида углерода (IV) СО2 и Н2О:

Видеоопыт «Горение уксусной кислоты на воздухе»

В отличие от альдегидов, карбоновые кислоты достаточно устойчивы к действию даже такого сильного окислителя, как перманганат калия. Исключение составляет муравьиная кислота, которая проявляет восстановительные свойства благодаря наличию альдегидной группы.

V. Реакции каталитического восстановления

Карбоновые кислоты с трудом восстанавливаются каталитическим гид-рированием, однако при взаимодействии с алюмогидридом лития (LiAlH4) или дибораном (В2Н6) восстановление осуществляется достаточно энергично:

Особенности строения и свойства муравьиной кислоты

Муравьиная (метановая) кислота НСООН по своему строению и свойствам отличается от остальных членов гомологического ряда предельных монокарбоновых кислот.

В отличие от других карбоновых кислот в молекуле муравьиной кислоты функциональная карбоксильная группа

связана не с углеводородным радикалом, а с атомом водорода. Поэтому муравьиная кислота является более сильной кислотой по сравнению с другими членами своего гомологического ряда.

Все предельные карбоновые кислоты устойчивы к действия концентрированной серной и азотной кислот. Но муравьиная кислота при нагревании с концентрированной серной кислотой разлагается на воду и монооксид углерода (угарный газ).

1. Разложение при нагревании

При нагревании с концентрированной H2SO4 муравьиная кислота разлагается на оксид углерода (II) и воду:

Данную реакцию используют в лаборатории для получения чистого оксида углерода (II).

Видеоопыт «Разложение муравьиной кислоты»

Молекула муравьиной кислоты, в отличие от других карбоновых кислот, наряду с карбоксильной группой содержит в своей структуре и альдегидную группу.

Поэтому муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Как и альдегиды, НСООН проявляет восстановительные свойства. Проявляя свойства альдегида, муравьиная кислота легко окисляется до угольной кислоты:

2. Окисление перманганатом калия

Видеоопыт «Окисление муравьиной кислоты раствором перманганата калия»

Муравьиная кислота окисляется аммиачным раствором Ag2О и гидроксидом меди (II) Cu (OH)2, т.е. дает качественные реакции на альдегидную группу!

3. Реакция «серебряного зеркала»

или в упрощенном виде

4. Окисление гидроксидом меди (II)

5. Окисление хлором, хлоридом ртути

Муравьиная кислота окисляется и другими окислителями (Сl2, HgCl2).

Формиаты щелочных металлов при сплавлении образуют соли щавелевой кислоты — оксалаты:

Видеоопыт «Взаимодействие бромной воды с олеиновой кислотой»

Химические свойства карбоновых кислот

Разделы: Химия

Цели:

  • на примере уксусной кислоты изучить химические свойства предельных одноосновных карбоновых кислот;
  • показать сходство и отличие неорганических и органических кислот;
  • развивать умение записывать химические реакции с участием органических веществ;
  • воспитывать самостоятельность мышления и аккуратность в обращении с химическими веществами.

Тип урока: изучения нового материала.

Методы и методические приемы: демонстрационный, словесный (беседа по вопросам, рассказ), наглядный, исследовательская работа.

Оборудование и реактивы:

а) на столах у учащихся: штативы с 5 пробирками, в 1-ой пробирке – раствор уксусной кислоты, в остальных – магний, оксид магния, гидроксид меди и карбонат кальция; лакмусовая бумажка, инструктивные карточки для выполнения практической работы;
б) на демонстрационном столе: 8 химических стаканов (50 мл), из них в 4 –х стаканах – раствор соляной кислоты, в 4-х других – магний, оксид магния, гидроксид меди, карбонат кальция; этиловый спирт, уксусная кислота, концентрированная серная кислота; пробирка, спиртовка, спички, пробиркодержатель.

Ход урока

I. Организация.

II. Проверка домашнего задания (7 мин).

— На прошлом уроке вы познакомились с новым классом кислородсодержащих органических веществ – карбоновыми кислотами. Вы узнали как классифицируют кислоты, познакомились с отдельными представителями веществ этого класса. Ответьте на вопросы.

  1. Какие вещества называют карбоновыми кислотами?
  2. Как классифицируют карбоновые кислоты?
  3. Каким способом получают карбоновые кислоты?
  4. С какой кислоты начинается гомологический ряд предельных одноосновных карбоновых кислот? Чем она отличается от гомологов по строению и свойствам?
  5. Какие физические свойства характерны для муравьиной и уксусной кислот?
  6. Каковы области применения муравьиной кислоты и уксусной кислоты?

III. Изучение нового материала.

— На сегодняшнем уроке продолжим изучать кислоты. Выясним, какие химические свойства характерны для них, отличаются ли химические свойства предельных одноосновных карбоновых кислот от химических свойств неорганических кислот. Запишите дату и тему урока.

— Вспомните, с какими классами веществ взаимодействуют неорганические кислоты.

Планируемый ответ ученика.

(Неорганические кислоты изменяют цвет индикаторов, взаимодействуют с металлами, основными и амфотерными оксидами, основаниями, амфотерными гидроксидами и с солями.)

Учитель демонстрирует опыты, подтверждающие химические свойства соляной кислоты:

1) изменение цвета индикатора,
2) взаимодействие с магнием,
3) взаимодействие с оксидом магния,
4) взаимодействие со свежеприготовленным гидроксидом меди,
5) взаимодействие с карбонатом кальция.

— Химические свойства карбоновых кислот обусловлены подвижность атома водорода гидроксогруппы в карбоксиле. Для выяснения химических свойств карбоновых кислот вы проведёте небольшое исследование.

Рассмотрите выданные вам наборы веществ, внимательно прочитайте инструктивную карточку. По ходу выполнения опытов заполните второй и третий столбцы таблицы. Соблюдайте правила проведения опытов.

(На выполнение работы и обсуждение её результатов – 30 мин).

Содержание инструктивной карточки

  1. Выполните опыты, указанные в таблице.
  2. Во втором столбце запишите наблюдаемые явления.
  3. В третьем столбце запишите выводы. Если затрудняетесь сделать вывод самостоятельно, заполнение столбца оставьте до обсуждения.
№ опытаОпытЧто наблюдалиВывод
1.В пробирку с уксусной кислотой опустите лакмусовую бумажку.
2.В пробирку с магнием прилейте уксусную кислоту.
3.Прилейте уксусную кислоту в пробирку с оксидом магния.
4.Прилейте уксусную кислоту в пробирку с гидроксидом меди.
5.Прилейте уксусную кислоту в пробирку с карбонатом кальция.

— Вы провели исследование химических свойств карбоновых кислот. Ответьте на вопросы:

1. Как изменяет свой цвет лакмусовая бумажка в растворе уксусной кислоты?

Планируемый ответ ученика.

(В растворе уксусной кислоты лакмусовая бумажка краснеет.)

— Подобно неорганическим кислотам, карбоновые кислоты являются слабыми электролитами, а потому диссоциируют обратимо:

— Что вы наблюдали при проведении второго опыта? Какой вывод можно сделать?

Планируемый ответ ученика.

(Видели, что при взаимодействии уксусной кислоты с магнием выделялся газ. Значит, уксусная кислота взаимодействует с металлами.)

— Уксусная кислота взаимодействует с металлами, стоящими в ряду напряжения металлов до водорода:

Соли уксусной кислоты называются ацетатами, соли муравьиной кислоты – формиатами.

— Что вы наблюдали при проведении третьего опыта? Какой вывод можно сделать?

Планируемый ответ ученика.

(При проведении третьего опыта мы наблюдали исчезновение порошка оксида магния в растворе уксусной кислоты. Это говорит о том, что уксусная кислота взаимодействует с оксидами металлов.)

— Уксусная кислота взаимодействует с основными оксидами и амфотерными оксидами с образованием соли и воды:

— Каковы результаты четвертого опыта?

Планируемый ответ ученика.

(В четвертом опыте мы наблюдали исчезновение осадка гидроксида меди. Уксусная кислота взаимодействует с основаниями.)

— Уксусная кислота взаимодействует с основаниями и амфотерными гидроксидами. Запишем уравнение реакции взаимодействия уксусной кислоты с гидроксидом меди и гидроксидом цинка:

— Что можно сказать о результатах пятого опыта? Какой вывод можно сделать?

Планируемый ответ ученика.

(При взаимодействии уксусной кислоты с карбонатом кальция наблюдали бурное течение реакции с выделением газа. Это говорит о том, что уксусная кислота взаимодействует с солями.)

— Уксусная кислота как слабый электролит взаимодействует с солями более слабых кислот:

— Вспомните, при каких условиях реакции идут до конца?

Планируемый ответ ученика.

(Реакции идут до конца, если выпадает осадок, выделяется газ или образуется малодиссоциируемое вещество или вода.)

— Подведем итоги проведенного исследования. Какие химические свойства характерны для одноосновных карбоновых кислот?

Планируемый ответ ученика.

(Предельные одноосновные карбоновые кислоты диссоциируют, взаимодействуют с металлами, стоящими в ряду напряжения металлов до водорода, основными и амфотерными оксидами, основаниями, амфотерными гидроксидами и солями.)

— Вы увидели, что для предельных одноосновных карбоновых кислот характерны такие же свойства, что и для неорганических кислот. В этом заключается их сходство. Но предельные одноосновные карбоновые кислоты вступают и в такие реакции, которые мы не рассматривали у неорганических кислот.

В пробирку с уксусной кислотой прильем этилового спирта (демонстрация опыта). Сначала мы не заметим каких – либо признаков реакции. Но если добавить немного серной кислоты и смесь подогреть, то вскоре появляется приятный запах этилового эфира уксусной кислоты:

Как вы знаете, эта реакция называется реакцией этерификации, в результате которой образуется сложный эфир.

Все свойства кислот, с которыми вы познакомились, связаны с присутствием в их молекуле гидроксильной группы.

IV. Закрепление.

Беседа по вопросам.

  1. Какие свойства являются общими для неорганических и органических кислот?
  2. Какая реакция называется реакцией этерификации?
  3. Наличие какой группы в молекуле карбоновых кислот обуславливает рассмотренные химические свойства?
  4. Как называются соли муравьиной и уксусной кислот?

V. Домашнее задание.

§12, с.89 — 90. Написать уравнения реакций взаимодействия муравьиной кислоты с магнием, оксидом кальция, гидроксидом натрия, силикатом натрия. Дать названия продуктам реакций.


источники:

http://himija-online.ru/organicheskaya-ximiya/karbonovye-kisloty/ximicheskie-svojstva-karbonovyx-kislot.html

http://urok.1sept.ru/articles/510690