Уравнение реакции мрамора с уксусной кислотой

ГДЗ учебник по химии 8 класс Габриелян. Практическая работа №4 Опыт 2. Номер №2

Взаимодействие мрамора с кислотой.
Положите в небольшой стакан 1 − 2 кусочка мрамора. Прилейте в стакан столько соляной кислоты, чтобы ею покрылись кусочки. Зажгите лучинку и внесите её в стакан. Образовались ли новые вещества при взаимодействии мрамора с кислотой? Какие признаки химических реакций вы наблюдали? Запишите уравнение химической реакции и укажите её тип по признаку числа и состава исходных веществ и продуктов реакции.

Решение

Поместим в химический стакан кусочек мрамора, и нальём в стакан соляной кислоты, ровно столько, чтобы ей покрылся кусочек; наблюдаем выделение пузырьков газа. Произошла химическая реакция, мрамор растворился, выделился углекислый газ $СO_<2>$ .
$CaCO_ <3>+ 2HCl ⟶ CaCl_ <2>+ H_<2>O + CO_<2>$ ↑.
Реакция обмена, при которой также протекает разложение слабой угольной кислоты на углекислый газ и воду ( $H_<2>CO_ <3>= H_<2>O + CO_<2>$ ↑).
Внесём в стакан зажженную лучинку, она погасла, т.к. углексислый газ $СO_2$ не поддерживает горение.

Взаимодействие мрамора с кислотой. Химия. 8 класс. Габриелян. ГДЗ. Хим. практикум № 1. Практ. работа № 4. Опыт 2.

Проведите следующий опыт. Взаимодействие мрамора с кислотой.
Положите в небольшой стакан 1—2 кусочка мрамора.
Прилейте в стакан столько соляной кислоты, чтобы ею покрылись кусочки. Зажгите лучинку и внесите её в стакан.
Образовались ли новые вещества при взаимодействии мрамора с кислотой? Какие признаки химических реакций вы наблюдали? Запишите уравнение химической реакции и укажите её тип по признаку числа и состава исходных веществ и продуктов реакции.

Опыт 1. Сравнение химической активности кислот

В одну пробирку налить 1–2 мл раствора уксусной кислоты (CH3COOH), в другую – столько же раствора соляной кислоты (HCl). Взять два приблизительно одинаковых по величине кусочка мрамора и бросить по одному в каждую пробирку. Наблюдать выделение газа и отметить, в какой пробирке процесс идет более энергично.

Требования к результатам опыта

1. Написать молекулярные и ионные уравнения реакций взаимодействия мрамора (СаСО3) с уксусной и соляной кислотой.

2. Сделать вывод, от концентрации каких ионов зависит скорость выделения газа. В растворе какой кислоты концентрация этих ионов больше?

3. Учитывая, что для опыта взяты растворы соляной и уксусной кислот одинаковой концентрации, сделать вывод об относительной силе исследованных кислот.

Опыт 2. Реакции, идущие с образованием осадка

Налить в три пробирки по 1–2 мл сульфата магния, хлорида железа (III), сульфата меди (II) и прибавить в каждую по такому же количеству щелочи. Наблюдать образование осадков, отметить цвет. Осадки сохранить для следующего опыта.

Требование к результатам опыта

Составить молекулярные и ионные уравнения реакций образования осадков гидроксидов магния, железа (III) и меди (II).

Опыт 3. Реакции, идущие с образованием слабого электролита

К полученным в предыдущем опыте осадкам гидроксидов магния, железа, и меди прилить раствор соляной кислоты до полного их растворения.

Требования к результатам опыта

1. Составить молекулярные и ионные уравнения реакций растворения осадков гидроксидов магния, железа (III) и меди (II).

2. Объяснить растворение осадков в кислоте.

Опыт 4. Реакции, идущие с образованием газа

Налить в пробирку 1–2 мл раствора карбоната натрия, прилить в нее раствор соляной кислоты. Наблюдать выделение газа.

Требование к результатам опыта

Составить молекулярное и ионные уравнения реакции взаимодействия Na2CO3 с HCl.

Опыт 5. Амфотерные электролиты

В одну пробирку налить 2–3 мл раствора хлорида цинка, другую – столько же сульфата хрома (III). Затем в каждую пробирку добавить разбавленный раствор щелочи до выпадения осадков гидроксидов. В каждом случае осадки разделить на две пробирки. В одну из пробирок прилить раствор соляной кислоты, а в другую – раствор щелочи до растворения осадков.

Требования к результатам опыта

1. Составить молекулярные и ионные уравнения реакций образования осадков Zn(OH)2 и Cr(OH)3.

2. Составить молекулярные и ионные уравнения реакций растворения осадков гидроксидов цинка и хрома (III) в кислоте и щелочи.

3. Записать уравнения диссоциации полученных гидроксидов по типу кислот и по типу оснований.

Примеры решения задач

Пример 8.1.Составить молекулярные уравнения реакций, которым соответствуют следующие ионно-молекулярные уравнения:

Решение.В левой части данных ионно-молекулярных уравнений указаны ионы, которые образуются при диссоциации сильных электролитов, следовательно, при составлении молекулярных уравнений следует исходить из соответствующих растворимых сильных электролитов. Например:

При выполнении подобных заданий следует пользоваться табл. Б.3.

Пример 8.2.Составить молекулярные и ионно-молекулярные уравнения реакций, подтверждающие амфотерный характер гидроксида свинца.

Решение. Амфотерные электролиты могут диссоциировать по типу кислоты и основания, поэтому Pb(OH)2 может растворяться как в кислоте, проявляя свойство основания, так и в щелочи, проявляя свойства кислоты.

Схема диссоциации Pb(OH)2:

2H + + [Pb(OH)4] 2− Pb(OH)2 + 2H2O [Pb(H2O)2] 2+ +2OH ‾ .

Задачи и упражнения для самостоятельного решения

8.1. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) K2S и CuSO4; б) AgNO3 и NH4Cl;

8.2. Составить по два молекулярных уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Fe 3+ + 3OH — = Fe(OH)3; б) H + + OH − = H2O; в) Cu 2+ + S 2− = CuS.

8.3. Можно ли приготовить раствор, содержащий одновременно следующие пары веществ: а) KOH и Ba(NO3)2; б) NiSO4 и (NH4)2S; в) Pb(NO3)2 и KCl;

г) CuCl2 и Na2S? Представить возможные реакции в молекулярном и ионно-молекулярном виде.

8.4. Смешивают попарно растворы: а) KOH и Mg (NO3)2; б) Li2СO3 и HCl;

в) Fe(NO3)3 и KOH; г) NH4Cl и NaOH. В каких случаях реакции практически пойдут до конца? Представить их в молекулярном и ионно-молекулярном виде.

8.5. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) BaCO3 и HNO3; б) Fe2(SO4)3 и KOH;

в) HCl и K2S; г) CH3COOK и HCl.

8.6. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Mg(OH)2 и CH3COOH; б) NH4NO3 и KOH; в) Ca(NO3)2 и K2CrO4; г) AlCl3 и Ba(OH)2.

8.7. Смешивают попарно растворы: а) K2SO3 и HCl; б) Na2SO4 и KCl;

в) CH3COONa и HNO3; г) Al2(SO4)3 и избыток KOH. В каких из приведенных случаев реакции практически пойдут до конца? Составить для этих уравнений молекулярные и ионно-молекулярные реакций.

8.8. Какие из веществ будут взаимодействовать с гидроксидом калия:

а) Ba(OH)2; б) Sn(OH)2; в) NiSO4; г) H3PO4? Выразить эти реакции молекулярными и ионно-молекулярными уравнениями.

8.9. Составить по два молекулярных уравнения, которые выражаются ионно-молекулярными уравнениями: а) OH‾ + HS ‾ = H2O + S 2− ;

8.10. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Na2SO3 и H2SO4; б) CH3COOH и KOH;

8.11. Смешивают попарно растворы: а) Cu(NO3)2 и Na2SO4; б) BaCl2 и K2SO4; в) NaHCO3 и NaOH; г) Cd(OH)2 и HCl. В каких из приведенных случаев реакции практически пойдут до конца? Составить для этих реакций молекулярные и ионно-молекулярные уравнения.

8.12. Составить молекулярные и ионно- молекулярные уравнения реакций взаимодействия в растворах между: а) K2S и HCl; б) KHCO3 и H2SO4; в) MgSO4 и BaCl2; г) Ba(OH)2 и H2SO4.

8.13. Написать молекулярные и ионно-молекулярные уравнения реакций, соответствующие следующим превращениям:

а) CO3 2− → CaCO3 → Ca 2+- → CaSO4 ; б) S 2− → FeS → Fe 2+ .

8.14. Написать молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Hg(NO3)2 и Na2S; б) Li2SO3 и HCl; в) Ca(HCO3)2 и Ca(OH)2.

8.15. Составить по два молекулярных уравнения, которые соответствуют следующим сокращенным ионно-молекулярным уравнениям:

а) CH3COO − + H +- = CH3COOH; б) Ba 2+ + CrO4 2− = BaCrO4; в) Ag + + I − = AgI.

8.16.Составить молекулярные и ионно-молекулярные уравнения реакций, протекающих в растворах между: а) диоксидом углерода и гидроксидом бария; б) силикатом натрия и хлороводородной кислотой; в) сульфидом железа (II) и серной кислотой; г) иодидом калия и нитратом свинца.

8.17. Закончить молекулярные и составить ионно-молекулярные уравнения следующих реакций:

8.18. Закончить молекулярные и составить ионно-молекулярные уравнения следующих реакций:

8.19. Исходя из сокращенной ионно-молекулярной формы уравнения, составить по два молекулярных уравнения: а) CaCO3 + 2H + = Ca 2+ + H2O + CO2;

8.20. Написать молекулярные и ионно-молеулярные уравнения реакций взаимодействия в растворах между: а) Hg(NO3)2 и Nal; б) MgCO3 и HCl;

Лабораторная работа 9

Гидролиз солей

Цель работы: изучить понятие «гидролиз», рассмотреть типы гидролиза солей, научиться составлять молекулярные и ионные уравнения гидролиза солей.

Задание: определить рН среды в растворах различных солей, выявить влияние концентрации растворов и температуры на смещение равновесия гидролиза. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Гидролизом соли называется взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и изменению рН среды.

Гидролизу подвергаются соли, в состав которых входят катионы слабых оснований, или анионы слабых кислоты, или те и другие одновременно. Эти ионы связываются с ионами H + или OH ‾ из воды с образованием слабого электролита, в результате чего нарушается равновесие электролитической диссоциации воды H2O ↔ H + + OH ‾ . В растворе накапливаются ионы H + или ОН ‾ , сообщая ему кислую или щелочную реакцию. Соли, образованные сильным основанием и сильной кислотой (NaCl, NaNO3, K2SO4, BaCl2, LiNO3), гидролизу не подвергаются. В этом случае ни катион, ни анион соли не будут связывать ионы воды в малодиссоциированные продукты, поэтому равновесие диссоциации воды не нарушается. Реакция среды в растворах таких солей нейтральная, pH

Можно выделить три типа гидролиза:

1. Г и д р о л и з п о а н и о н у происходит в растворах солей, состоящих из анионов слабых кислот и катионов сильных оснований (CH3COOK, KNО2, Na2CO3, Cs3PO4). В этом случае анион слабой кислотысвязывается с иоными Н + из воды с образованием слабого электролита.

В качестве примера рассмотрим гидролиз нитрита калия KNО2. Эта соль образована сильным основанием KOH и слабой кислотой HNО2. При растворении в воде KNО2 полностью диссоциирует на ионы K + и NО2 ‾ . Катионы K + не могут связывать ионы ОH ‾ воды, так как KOH – сильный электролит. Анионы же NО2 ‾ связывают ионы H + воды, в результате чего в растворе появляются молекулы слабой кислоты HNО2 и гидроксид-ионы OH ‾ .

Порядок составление уравнений гидролиза следующий:

а) записывают уравнение диссоциации соли и подчеркивают ион, который может образовать с ионами воды (Н + или ОН − ) слабый электролит:

б) составляют краткое ионное уравнение и указывают рН среды:

NO2 − + НОН HNO2 + OH − pH > 7;

в) составляют полное ионное уравнение реакции. Для этого прибавляют к левой и правой частям краткого ионного уравнения ионы, не претерпевающие в результате гидролиза никаких изменений. В рассматриваемом примере – это катионы калия:

K + + NО2 ‾ + H2O HNО2 + K + + OH ‾ ;

г) составляют молекулярное уравнение гидролиза. Для этого ионы из полного ионного уравнения соединяют в молекулы:

KNО2 + H2O HNО2 + KOH.

Продукты гидролиза – слабая кислота HNО2 и гидроксид калия КОН.

Соли, образованные сильным основанием и слабой многоосновной кислотой, гидролизуются ступенчато. Гидролиз протекает в значительно большей мере по первой ступени, что приводит к образованию кислых солей:

S 2− + НOН HS ‾ + OH ‾ pH > 7

2Na + + S 2- + H2O Na + + HS ‾ + Na + + OH ‾

Na2S + H2O NaHS + NaOH.

Продуктами гидролиза является кислая соль NaHS и гидроксид натрия NaOH.

2. Г и д р о л и з п о к а т и о н у происходит в растворах солей, состоящих из катионов слабых оснований и анионов сильных кислот (NH4Cl, CuSO4, FeCl3, AlCl3, Pb(NO3)2, ZnSO4). В этом случае катион слабого основаниясвязывается с ионами ОН − из воды с образованием слабого электролита. Так, гидролиз суьфата цинка может быть представлен уравнениями:

Zn 2+ + HOН ZnOH + + H + рН 2+ + 2SO4 2− + 2H2O 2ZnOH + + SO4 2− + 2H + + SO4 2−

2ZnSO4 + 2H2O (ZnOH)2SO4 + H2SO4.

Продуктами гидролиза являются основная соль (ZnOH)2SO4 и серная кислота H2SO4.

3. Г и д р о л и з п о а н и о н у и к а т и о н у одновременно происходит в растворах солей, образованных слабыми основаниями и слабыми кислотами (NH4NO2, Al2S3, Fe(CH3COO)3, NH4CH3COO, NH4CN). В этом случае с водой взаимодействует как катион слабого основания, так и анион слабой кислоты, например:

NH4 + + HOН NH4OH + H +

CH3COO ‾ + HOН CH3COOH + ОН −

NH4 + + CH3COO ‾ + H2O NH4OH + CH3COOH

NH4CH3COO + H2O NH4OH + CH3COOH.

Продуктами гидролиза являются слабая кислота CH3COOH и слабое основание NH4OH. Среда после гидролиза близка к нейтральной, pH

Как правило, гидролиз – обратимый процесс. В первых двух случаях равновесие сильно смещено влево – в сторону малодиссоциированных молекул воды, в третьем – вправо, в сторону образования продуктов гидролиза – двух слабых электролитов.

Практически необратимо гидролизуются только те соли, продукты гидролиза которых уходят из раствора в виде нерастворимых или газообразных соединений. Необратимо гидролизующиеся соли невозможно получить в результате реакции обмена в водных растворах. Например, вместо ожидаемого Cr2S3 при смешивании растворов CrCl3 и Na2S образуется осадок Cr(OH)3 и выделяется газообразный H2S:

На равновесие гидролиза влияют температура и концентрация. Смещение равновесия гидролиза происходит в соответствии с принципом Ле Шателье. Гидролиз – это реакция, обратная нейтрализации, а нейтрализация – экзотермический процесс, следовательно, гидролиз – эндотермический. Поэтому увеличение температуры усиливает гидролиз (т.е. смещает равновесие вправо). При постоянной температуре равновесие гидролиза можно сместить вправо (усилить гидролиз), разбавляя раствор водой и удаляя продукты гидролиза. Гидролиз подавляется (равновесие смещается влево), если увеличить концентрацию продуктов гидролиза.

Выполнение работы

Опыт 1. Реакция среды в растворах различных солей

На полоски универсальной индикаторной бумаги нанести по капле раствора хлорида натрия NaCl, сульфата меди CuSO4, нитрата свинца Pb(NO3)2, карбоната натрия Na2CO3, ацетата калия CH3COOK и ацетата аммония CH3COONH4. По изменению окраски индикаторной бумаги сделать вывод о реакции среды в растворе каждой соли.

Требования к результатам опыта

1. Составить сокращенные, полные ионные и молекулярные уравнения реакций гидролиза солей, указать рН среды. В случае ступенчатого гидролиза написать уравнения реакций только для первой ступени.

2. Сделать вывод, какие типы солей подвергаются гидролизу.


источники:

http://class.rambler.ru/temy-gdz/vzaimodeystvie-mramora-s-kislotoy-himiya-8-klass-gabrielyan-gdz-him-praktikum-1-prakt-rabota-4-opyt-2-32521.htm

http://lektsia.com/6x91a3.html