Уравнение реакции получения формальдегида из метана

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: метан → формальдегид → метанол → муравьиная кислота → угольная кислота. Укажите условия протекания реакций.

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: метан → формальдегид → метанол → муравьиная кислота → угольная кислота. Укажите условия протекания реакций.

Решебник по химии за 10 класс (А.М.Радецкий, 1999 год),
задача №1
к главе «Тема VII(VI). Альдегиды, кетоны и карбоновые кислоты. Работа 4 Генетическая связь между углеводородами, спиртами, альдегидами и карбоновыми кислотами. Вариант 4».

Выделите её мышкой и нажмите CTRL + ENTER

Большое спасибо всем, кто помогает делать сайт лучше! =)

Нажмите на значок глаза возле рекламного блока, и блоки станут менее заметны. Работает до перезагрузки страницы.

Уравнение реакции получения формальдегида из метана

1. Окисление спиртов

В лаборатории карбонильные соединения получают окислением спиртов в жестких условиях в присутствии сильных окислителей (дихромата калия К2Cr2O7 или перманганата калия КМnО4) в серной кислоте Н2SO4. В качестве окислителя можно использовать оксид меди (II) при нагревании.

При окислении первичных спиртов образуются альдегиды:

Видеоопыт «Окисление этилового спирта оксидом меди (II)»

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот:

Чтобы предотвратить превращение альдегида в кислоту, его отгоняют в ходе реакции (tкип альдегида, не образующего межмолекулярные водородные связи, ниже tкип спирта и кислоты).

При окислении вторичных спиртов образуются кетоны:

Присоединение воды к ацетилену происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта (енола), который изомеризуется в уксусный альдегид (в случае ацетилена):

Кетоны получают при гидратации других гомологов ряда алкинов:

Раньше это был промышленный способ получения карбонильных соединений. В настоящее время этот способ находит ограниченное применение из-за загрязнения получаемых продуктов токсичными солями ртути и относительной дороговизны.

3. Каталитическое окисление алкенов кислородом воздуха

Этим способом в промышленности получают уксусный альдегид — окислением этилена кислородом воздуха (Вакер-процесс).

Эта реакция протекает в присутствии катализатора – смеси PdCl2 и CuCl2 и температуре 100 0 С:

Этим экономичным способом получают низшие альдегиды и кетоны.

Этот промышленный способ более перспективен, чем гидратация алкинов, при которой используются токсичные ртутные катализаторы.

4. Каталитическое дегидрирование спиртов

В промышленности альдегиды и кетоны получают дегидрированием спиртов, пропуская пары спирта над нагретым катализатором (Cu, соединения Ag, Cr или Zn).

Первичные спирты окисляются до альдегидов, а вторичные – до кетонов.

Этот способ получения объясняет суть названия «альдегид» (от лат. alconol dehydrogenatum – спирт, от которого «отняли» водород).

Этот способ позволяет получать карбонильные соединения, в особенности альдегиды, без побочных продуктов окисления.

В 1835 г. немецкий химик Ю. Либих выделил индивидуальное вещество, молекула которого содержала на два атома водорода меньше, чем этанол. Ученый установил состав этого соединения – С2Н4О и назвал его альдегидом (от лат. al conol dehyd rogenatum — т.е. дегидрированный спирт, «спирт, лишенный водорода»).

В 1867 г. немецкий химик-органик А. Гофман, пропуская пары метилового спирта над раскаленной платиновой спиралью, получил газообразное вещество состава СН2О, молекула которого отличается от открытого Либихом альдегида на группу -СН2— . Именно это соединение (муравьиный альдегид) открывает гомологический ряд альдегидов.

5. Щелочной гидролиз дигалогеналканов

Реакция протекает при действии водных растворов щелочей на дигалогензамещенные углеводороды, содержащие два атома галогена у одного и того же атома углерода.

При щелочном гидролизе дигалогеналканов образуются двухатомные спирты, в которых две группы ОН соединены с одним атомом углерода. Эти вещества неустойчивы и при отщеплении воды, превращаются в карбонильные соединения.

Если два атома галогена связаны с первичным атомом углерода, то образуются альдегиды:

При гидролизе дигалогеналканов, содержащих атомы галогена у вторичного атома углерода, образуются кетоны:

Это лабораторный способ получения карбонильных соединений.

6. Пиролиз солей карбоновых кислот

При пиролизе (термическое разложение) кальциевых, бариевых солей карбоновых кислот образуются соответствующие карбонильные соединения. Из смешанной соли муравьиной и другой карбоновой кислоты получают альдегиды, а в остальных случаях образуются кетоны.

Это лабораторный способ получения карбонильных соединений.

7. Кумольный способ получения ацетона (наряду с фенолом)

Простейший кетон – ацетон – получают кумольным методом вместе с фенолом:

Это промышленный способ получения ацетона.

Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

Получение формальдегида

1. Окисление метана

Формальдегид в промышленности можно получить окислением метана кислородом воздуха при высоких температурах с использованием катализатора:

2. Окисление метанола

Основной промышленный способ получения формальдегида – окисление метанола с использованием серебряного катализатора при температуре 650 0 С и атмосферном давлении:

Реакция происходит на раскаленной серебряной сетке, через которую проходят пары ментола, смешанные с воздухом. Реакция настолько экзотермична, что выделяющейся в ходе ее теплоты достаточно для того, чтобы поддерживать сетку в раскаленном состоянии.

В настоящее время разработан перспективный способ высокотемпературного окисления метанола с использованием железомолибденовых катализаторов:

Химические свойства и способы получения муравьиного альдегида

Задача 4.
Опишите химические свойства муравьиного альдегида. Приведите промышленные и лабораторные способы получения этого соединения.
Решение:
Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует 3 сигма-связи (две связи С-Н и одну связь С-О). Сигма-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием пи- и сигма-связей. Электронная плотность смещена в сторону атома кислорода.

В молекулах альдегидов имеется несколько реакционных центров: электрофильный центр (карбонильный атом углерода), участвующий в реакциях нуклеофильного присоединения; основный центр – атом кислорода с неподеленными электронными парами; Н-С(О)-Н кислотный центр, отвечающий за реакции конденсации; связь С-Н, разрывающаяся в реакциях окисления.

Реакции присоединения

1. Присоединение водорода (восстановление):

Н-CH=O + H2 (t,Ni) → Н-CH2-OH (метиловый спирт);

2. Присоединение аммиака:

3. Присоединение бисульфита натрия:

4. Присоединение циановодородной кислоты (синильной):

Н-CH=O + H-CN → H-CH(CN)-OH;

5. Присоединение гидразина с образованием гидразона:

6. Присоединение аминов с образованием N-замещенного имина:

7. Присоединение тиола с образованием дитиоацеталя (в кислой среде):

8. Присоединение воды с образованием гем-диола:

Н-CH=O + Н-ОН → Н-CH(OH)-OH.

При действии щелочи на формалин получаются метиловый спирт и муравьиная кислота:

2Н-CH=O + Н-ОН → СН3-ОН + Н-СООН.

В присутствии щелочей в водном растворе может идти и другая реакция: формальдегид конденсируется, причем в числе прочих продуктов получается один из простейших сахаров, или гексоз:

6Н-CH=O → C6H12O6 (Реакция Бутлерова: 2Н-CH → O + RbOH = -CH=O);

9. Присоединение спирта с образованием полуацеталя:

10. При взаимодействии формальдегида с ацетальдегидом в газовой фазе в присутствии катализаторов (окись алюминия, ацетат свинца на силикагеле и др.) образуется акролеин:

В водном растворе при большом избытке формальдегида под влиянием гидроокиси кальция конденсация с ацетальдегидом приводит к пентаэритриту:

Высшие алифатические альдегиды дают в этих условиях окси-или диоксиальдегиды (в зависимости от числа H-водородных атомов):

Формальдегид при взаимодействии с ацетоном образует ангидроэннеагептилол:

Реакции окисления

1. Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO4, K2Cr2O7, [Ag(NH3)2]OH, Cu(OH)2. Все реакции идут при нагревании:

Реакции полимеризации

1. Реакция с фенолом с образованием фенолформальдегидных смол:

Получение формальдегида:

Промышленные методы получения формальдегида

1. Окисление метанола.

Реакция проводится в присутствии серебряного катализатороа и при нагревании (около 650—720 °C) или при 400 °C в присутствиии железо-никилиевых катализаторов:

2. Реакция дегидрирования метанола.

Процесс проводится на цинк-медных катализаторах при 600 °C:

3. Окисление метана.

Реакцию проводят при температуре 450 °C и давлении 1—2 МПа на катализаторе AlPO4.

Лабораторные способы получения формальдегида

1. Восстановление метанола:

Реакцию проводят, опуская раскаленную медную проволоку в пробирку с метанолом, образуется резкий запах альдегида. Если процесс окисления повторить несколько раз, то можно получить значительную концентрацию формальдегида.

2. Реакция метанола с перманганатом калия:

Смесь слабого раствора марганцовки и метанола нагревают до кипения. Появляется запах формальдегида, а фиолетовая окраска перманганата исчезает.

3. Реакция метанола с бихроматом калия:

В насыщенный раствор бихромата калия К2Сг2О7 добавляют такой же объем концентрированной серной кислоты. Затем по каплям вводят метанол. Очень осторожно подогревают смесь (отверстие пробирки направляют в сторону!). Реакция идет с выделением тепла. Желтая окраска хромовой смеси исчезает, и появляется зеленая окраска сульфата хрома.


источники:

http://himija-online.ru/organicheskaya-ximiya/aldegidy-i-ketony/poluchenie-aldegidov-i-ketonov.html

http://buzani.ru/zadachi/organicheskaya-khimiya/1721-muravinyj-aldegid-formaldegid-zadacha-56