Уравнение реакции получения гидроксида лития

Гидроксид лития: способы получения и химические свойства

Гидроксид лития при стандартных условиях представляет собой бесцветные кристаллы. Растворяется в воде.

Относительная молекулярная масса Mr = 23, 95; относительная плотность для тв. и ж. состояния d = 1, 46; tпл = 471◦ C;

Способы получения

1. Гидроксид лития получают электролизом раствора хлорида лития :

2LiCl + 2H2O → 2LiOH + H2 + Cl2

2. При взаимодействии лития, оксида лития, гидрида лития и пероксида лития с водой также образуется гидроксид лития:

2Li + 2H2O → 2LiOH + H2

Li2O + H2O → 2LiOH

2LiH + 2H2O → 2LiOH + H2

3. Карбонат лития при взаимодействии с гидроксидом кальция образует гидроксид лития:

Качественная реакция

Качественная реакция на гидроксид лития — окрашивание фенолфталеина в малиновый цвет .

Химические свойства

1. Гидроксид лития реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2. Гидроксид лития реагирует с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3. Гидроксид лития реагирует с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. С кислыми солями гидроксид лития также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

5. Гидроксид лития взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в растворе гидроксида лития:

Сера взаимодействует с гидроксидом лития только при нагревании:

6. Гидроксид лития взаимодействует с амфотерными металлами , кроме железа и хрома. При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2LiOH + 2Al + 6Н2О = 2Li[Al(OH)4] + 3Н2

7. Гидроксид лития вступает в обменные реакции с растворимыми солями .

Хлорид меди (II) реагирует с гидроксидом лития с образованием хлорида лития и осадка гидроксида меди (II):

2LiOH + CuCl2 = Cu(OH)2↓+ 2LiCl

Также с гидроксидом лития взаимодействуют соли аммония .

Например , при взаимодействии хлорида аммония и гидроксида лития образуются хлорид лития, аммиак и вода:

NH4Cl + LiOH = NH3 + H2O + LiCl

8. Гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Гидроксид лития проявляет свойства сильного основания. В воде практически полностью диссоциирует , образуя щелочную среду и меняя окраску индикаторов.

LiOH ↔ Li + + OH —

10. Гидроксид лития в расплаве подвергается электролизу . При этом на катоде восстанавливается сам литий, а на аноде выделяется молекулярный кислород:

4LiOH → 4Li + O2 + 2H2O

Гидроксид лития. Примеры химических реакции, а также физические свойства щелочи и ее особенности

Что такое гидроксид лития? Это соединение является одним из важнейших термоустойчивых соединений, используемых в производстве для получения различных солей лития. Ионы этого элемента обладают рядом характерных особенностей, которые нашли свое широкое применение в химическом производстве.

Особенности строения атома лития

Литий (Li) является элементом I группы основной подгруппы 2-го периода, и относится к группе щелочных металлов. Его часто называют переходным к щелочноземельным элементам, поскольку он имеет немного меньшую активность, чем следующие представители этой группы, например, натрий (Na) или калий (K).

Атом лития обладает самым маленьким радиусом среди всех щелочных металлов, что обуславливает его химическую активность. Также особую роль играет предшествующая валентному электрону 2s 1 устойчивая электронная оболочка 1s 2 типа гелия, которая создает высокую поляризуемость частицы.

Это свойство лития характеризует возникновение электромагнитных или дипольных полей вокруг атома, что позволяет создавать прочные комплексные ионы вроде [Li(NH3)n] + . Стоит отметить, что при таких свойствах сам атом не подвержен поляризации, что объясняет термическую неустойчивость некоторых его солей, в особенности с комплексными анионами.

Все вышеперечисленные факты объясняют некоторые особенности в физических и химических свойствах гидроксида лития (LiOH).

Физические свойства

Чистый LiOH – очень едкое вещество, способное разрушить стекло и фарфор, поэтому его хранят в парафинированных сосудах. В расплавленном состоянии его можно получить только в никелевых или серебряных сосудах, так как он окисляет большинство металлов и сплавов. Золото является одним из немногих веществ, устойчивых к влиянию подобного соединения.

Само основание, по сравнению с окисью Li2O, химически неустойчиво и уже ближе к 1000 °C в атмосфере водорода H2 разлагается на составляющие (пример 1).

Оксид лития и гидроксид лития в химически чистом состоянии являются твердыми веществами, относительно растворимы в воде, но менее (почти в 5 раз), чем аналогичные соединения следующих представителей группы. Высшая точка растворения у описываемого основания приходится при 100 °C – 17,5 г/100 г растворителя, тогда как, например, у гидроксида натрия (NaOH) — 337 г/100 г и продолжает расти с повышением температуры. В то же время растворимость гидроксида лития практически в 100 раз больше растворимости гашеной извести (Ca(OH)2), у которой такая способность снижается с повышением температуры.

Интересно, что экспериментально удалось получить газообразный LiOH в присутствии паров воды. Его получают путем нагревания оксида Li до 2000 °C, когда после рубежа в 1000 °C давление пара этого соединения увеличивается за счет образования устойчивого родственного основания (пример 2).

Химические свойства

Гидроксид лития кислотой не считается, так как не является амфотерным элементом и не проявляет способности к распаду по типу MeOH ↔ MeO — + H + (где, Me — любой металл I или II группы основной подгруппы), как и другие представители щелочных металлов. Про такие соединения говорят, что они являются очень сильными основаниями, так как константа их диссоциации по принципу MeOH ↔ Me + + OH — очень высокая (Кb, LiOH = 6,75 · 10 -1 ).

Поскольку подобное соединение проявляет сильные основные свойства, оно может вступать в реакции нейтрализации с кислотами, кислотными оксидами и обмена с различными солями (пример 3).

Также характерной реакцией является взаимодействие холодных и горячих концентрированных растворов гидроксида лития с газообразным хлором с образованием гипохлоритов и хлоратов лития (пример 4).

Особенностью данного основания является взаимодействие с горячим раствором перекиси водорода H2O2 с образованием кристаллогидрата перекисного лития Li2O2 в среде этанола, разделяемый в вакууме (пример 5).

Получение

LiOH получают различными способами, одним из которых является непосредственное взаимодействие металла или его оксида с водой по схеме литий → оксид лития → гидроксид лития.

Также применяется гидролиз сульфида, нитрида, фосфидов и других соединений (пример 3).

Реакции обмена растворов солей лития возможны практически с любыми основаниями, например гидроксидом калия (KOH), кальция (Ca(OH)2) и бария (Ba(OH)2), причем с последним реагентом химическое взаимодействие идет практически до конца с сульфатом Li. В первом и втором случае реакция будет оправдана за счет плохой растворимости получаемых солей в растворе LiOH (пример 4), а в третьем — к этому прибавится нерастворимое в воде BaSO4 (пример 4). Стоит отметить, что последний вариант не используется на производстве по экономическим соображениям.

Еще одним примечательным методом получения данного соединения является электролиз раствора хлорида лития LiCl на ртутном катоде. При этом образуется амальгама HgLi, интересная тем, что температура ее плавления гораздо выше (609 °C), чем любого ее компонента. В процессе разложения водой полученного соединения образуется необходимое основание (пример 5).

Особенное промышленное значение имеет реакция разложения карбоната лития гашеной известью, в ходе которого химическое равновесие искусственно сдвигается в правую сторону для более высокого выхода основного продукта (пример 6).

Применение

Гидроксид лития используется при получении стеаратов этого металла для производства водоупорных морозо- и термостойких смазочных материалов. Также применяется в качестве катализатора при изготовлении полимерных материалов и как компонент электролита в различных аккумуляторах.

В пожарной и военной практике гидроксид лития используется как поглотитель углекислого газа (CO2) в противогазах.

Гидроксид лития (LiOH) формула, свойства, риски и применение

гидроксид лития представляет собой химическое соединение формулы LiOH (EMBL-EBI, 2008). Гидроксид лития является основным неорганическим соединением. Это используется в значительной степени в органическом синтезе, чтобы продвинуть реакцию из-за ее сильной основности.

Гидроксид лития не встречается в природе свободно. Он очень реактивный, и если бы он был в природе, он мог бы легко реагировать с образованием других соединений. Однако некоторые минералы лития / алюминия, которые образуют различные смеси, могут быть найдены в различных минералах..

В 1950 году изотоп Li-6 использовался в качестве сырья для производства термоядерного оружия, такого как водородная бомба.

С этого момента индустрия атомной энергетики США начала использовать большое количество гидроксида лития, что привело к неожиданному развитию литиевой промышленности (Lithium hydroxide, 2016).

Большая часть гидроксида лития образуется в результате реакции между карбонатом лития и гидроксидом кальция (формула гидроксида лития, S.F.). Эта реакция дает гидроксид лития, а также карбонат кальция:

Его также готовят из реакции оксида лития и воды:

Гидроксид лития использовался в качестве абсорбента углекислого газа на подводной лодке и надувном источнике армейского воздушного шара в 1944 году..

  • 1 Физико-химические свойства
  • 2 Реактивность и опасности
  • 3 использования
  • 4 Ссылки

Физико-химические свойства

Гидроксид лития — это белые кристаллы без характерного аромата (Национальный центр биотехнологической информации, 2017). Его внешний вид показан на рисунке 2.

В водном растворе он образует кристаллическую жидкость с едким ароматом. Его молекулярная масса составляет 23,91 г / моль. Он существует в двух формах: безводный и моногидрат LiOH.H2O, который имеет молекулярную массу 41,96 г / мес. Соединение имеет плотность 1,46 г / мл для безводной формы и 1,51 г / мл для моногидратированной формы..

Его температуры плавления и кипения составляют 462 ° C и 924 ° C соответственно. Гидроксид лития является единственным щелочным гидроксидом, который не имеет полиморфизма, а его сеть имеет тетрагональную структуру. Это соединение очень хорошо растворяется в воде и слабо растворяется в этаноле (Royal Society of Chemistry, 2015).

Гидроксид лития и другие щелочные гидроксиды (NaOH, KOH, RbOH и CsOH) очень универсальны для использования в органическом синтезе, потому что они являются более сильными основаниями, которые легко реагируют.

Может реагировать с водой и углекислым газом при комнатной температуре. Он также может реагировать со многими металлами, такими как Ag, Au, Cu и Pt, поэтому он является важным исходным материалом в металлоорганическом синтезе..

Растворы гидроксида лития экзотермически нейтрализуют кислоты с образованием солей и воды. Они реагируют с определенными металлами (такими как алюминий и цинк) с образованием оксидов или гидроксидов металлов и образуют газообразный водород. Они могут инициировать реакции полимеризации в полимеризуемых органических соединениях, особенно эпоксидах..

Он может генерировать легковоспламеняющиеся и / или токсичные газы с солями аммония, нитридами, галогенированными органическими соединениями, различными металлами, пероксидами и гидропероксидами. Может служить катализатором.

Реагирует при нагревании выше примерно 84 ° C с водными растворами редуцирующих сахаров, кроме сахарозы, с образованием токсичных уровней окиси углерода (CAMEO, 2016).

Реактивность и опасности

Гидроксид лития является стабильным соединением, хотя он несовместим с сильными кислотами, углекислым газом и влагой. Вещество разлагается при разогреве (924 ° C) с образованием токсичных паров.

Раствор в воде является сильной основой, бурно реагирует с кислотой и вызывает коррозию алюминия и цинка. Реагирует с окислителями.

Это вещество вызывает коррозию глаз, кожи, дыхательных путей и проглатывания. Вдыхание вещества может вызвать отек легких.

Симптомы отека легких часто проявляются только через несколько часов и усиливаются при физической нагрузке. Воздействие может привести к смерти. Последствия могут быть отсрочены (Национальный институт безопасности и гигиены труда, 2015 г.).

Если соединение попало в глаза, контактные линзы должны быть проверены и удалены. Глаза следует немедленно промыть большим количеством воды в течение не менее 15 минут холодной водой.

При попадании на кожу пораженный участок следует немедленно промыть в течение не менее 15 минут большим количеством воды или слабой кислоты, например, уксуса, при снятии загрязненной одежды и обуви..

Покройте раздраженную кожу смягчающим средством. Стирайте одежду и обувь перед тем, как использовать их снова. Если контакт сильный, промойте дезинфицирующим мылом и покройте кожу, загрязненную антибактериальным кремом.

В случае вдыхания пострадавшего следует перенести в прохладное место. Если вы не дышите, вам дадут искусственное дыхание. Если дыхание затруднено, обеспечьте кислород.

При проглатывании соединения не следует вызывать рвоту. Ослабьте тесную одежду, такую ​​как воротник рубашки, ремень или галстук.

Во всех случаях требуется немедленная медицинская помощь (паспорт безопасности материала Гидроксид лития, 21).

приложений

Гидроксид лития используется при производстве литиевых солей (мыл) стеариновой кислоты и других жирных кислот.

Эти мыла широко используются в качестве загустителей в консистентных смазках для улучшения термостойкости, водостойкости, стабильности и механических свойств. Жировые добавки можно использовать в подшипниках автомобиля, самолета, крана и т. Д..

Обожженный твердый гидроксид лития может использоваться в качестве поглотителя углекислого газа для членов экипажа космического корабля и подводной лодки..

Космический аппарат проектов НАСА «Меркурий», «Джеминни» и «Аполлон» использовал гидроксид лития в качестве абсорбентов. Он имеет надежную производительность и может легко поглощать углекислый газ из водяного пара. Химическая реакция:

1 г безводного гидроксида лития может абсорбировать диоксид углерода объемом 450 мл. Только 750 г безводного гидроксида лития может поглощать выдыхаемый углекислый газ одним человеком каждый день.

Гидроксид лития и другие соединения лития недавно использовались для разработки и исследования щелочных батарей (ENCYCLOPÆDIA BRITANNICA, 2013).


источники:

http://www.syl.ru/article/379807/gidroksid-litiya-primeryi-himicheskih-reaktsii-a-takje-fizicheskie-svoystva-schelochi-i-ee-osobennosti

http://ru.thpanorama.com/articles/qumica/hidrxido-de-litio-lioh-frmula-propiedades-riesgos-y-usos.html