Уравнение реакции при изгибе балки

Как определить реакции в опорах?

Автор: Константин Вавилов · Опубликовано 03.02.2016 · Обновлено 15.05.2018

Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Что такое реакция опоры?

Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.

В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!

Что вы должны уже уметь?

В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.

Должны уметь находить сумму проекций сил

Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!

Должны уметь составлять сумму моментов относительно точки

Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:

На изображении показано, как определить момент силы F, относительно точки O.

Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:

  • Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
  • Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.

Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.

Должны разбираться в основных видах опор

Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.

Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.

Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.

Примеры определения сил реакций опор

Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.

Определение реакций опор для балки

Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:

Для этой расчетной схемы, выгодно записать такое условие равновесия:
То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.

Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:

Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB.

Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:

После нахождения реакций, делаем проверку:

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:


Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Определение опорных реакций для плоской рамы

Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим глобальную систему координат x и y.

Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:

Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:

Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:

И, наконец, третье уравнение, позволит найти реакцию RA:

Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.

Расчет же показал, что RA, направленна в другую сторону:

В итоге, получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!

Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂

Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.

Расчет консольной балки на изгиб пример

Такие вопросы мы сегодня рассмотрим на этой страничке. Здесь есть видео урок на эту тему и описание к ней. Итак, поехали!

Вот какие еще уроки по сопротивлению материалов вы найдете на моем сайте:

Гипотезы и определения при изгибе

Прежде всего начнем с определений и гипотез, которые мы вводим в сопротивлении материалов при изучении изгиба:

Что такое балка? Балка — это стержень, длина которого значительно больше чем ширина и высота. При этом он испытывает деформацию изгиба.

Изгиб, что это? Это такой вид деформации, при котором происходит искривление продольной оси балки, но продольные волокна друг на друга не давят, а сечения плоские до изгиба остаются такими и после изгиба.

На рисунке выше изображена схема для вывода формулы напряжений и демонстрация напряжений, которые возникают при чистом изгибе. Этот термин придется изложить в другой статье. А пока продолжим.

Эпюра — это график изменения величины, для которой он построен. Так эпюра изгибающего момента — это график изменения внутреннего усилия — изгибающего момента по длине балки. Используя этот график, построенный в масштабе, можно с помощь простых операций определить значение изгибающего момента в любой точке по длине балки. Эпюра поперечной силы — аналогично, график ее изменения внутреннего усилия поперечная сила по длине балки.

Построение эпюр при изгибе

Приступим к построению эпюр при изгибе.

Для простоты, возьмем балку защемленную с одной стороны и свободным краем балки с другой стороны (про виды опор и опорные реакции видео урок). Почему так проще? Потому, что при таком способе закрепления не придется определять опорные реакции. Не будет такой необходимости. Дальше будет понятно почему.

На рисунке изображена одна продольная ось, а поперечное сечение не изображается. Что эта за ось? Это та ось, на которой не будет деформаций (нейтральный слой, выше на рисунке). Для сечений, которые простой формы, типа круг, квадрат, прямоугольник, двутавр или сложных составных форм — эта линия всегда проходит через главные центральные оси (опять же пока видео урок «моменты инерции«, а позже статью напишу). Чтобы построить эпюры достаточно и этого.

Итак, со схемой для расчета определились теперь перейдем непосредственно к самому расчету.

Метод сечений при изгибе

Покажем сечение на балке и дадим к нему некоторые пояснения:

Обычно эта схема рисуется одним цветом, но чтобы в тексте было проще описывать — я разделил на три цвета.

Начало координат оси x берем под силой F. Т.е. под этой силой x =0. Положительное направление оси здесь удобно брать влево, в сторону где расположена остальная часть балки. Соответственно x изменяется от нуля до полной длины балки. Только в этих пределах балка существует.

Сечение, которое обозначено на схеме «ядовито зеленым цветом» 😉 — может перемещаться, т.к. расстояние до него равно x .

Поэтому x сечения может быть в начале координат, а может быть в конце ну и в промежутке тоже. Нам нужно это понимать, чтобы зависимость для внутренних усилий построить с учетом этого перемещения. Не для конкретного положения сечения, а для любого положения по всей длине балки.

Отсеченную часть рассмотрим отдельно. Запишем условия равновесия для нее. В этом и заключается метод сечений — отсечь, посмотреть на внутренние усилия и найти их из условий равновесия.

На рисунке мы видим отсеченную часть. При этом сам x меняется слева на право от нуля до l.

При таком приложении нагрузки, если других сил на эту часть, кроме силы F, действовать не будет — то этот кусочек балки будет падать вниз, при этом вращаться и перемещаться поступательно. Т.е. совершать плоскопараллельное движение.

Логично предположить, что в реальной конструкции, по сравнению с отсеченной частью что-то эту часть балки «держит», не позволяет «падать». Это и есть силы взаимодействия на межатомном уровне и если их интегрально представлять — внутренние усилия. Значит одно должно удерживать поступательное перемещение вниз, а второе должно удерживать вращательное движение. Поступательное движение вызывает, а значит и может «остановить» — сила, а вращательное — момент. Вот эти усилия нас и интересуют. Внутренние усилия изгибающий момент M(x) и поперечная сила Q(x).

Изобразим их в нашем сечении:

Направление внутренних усилий на рисунке выбрано в соответствии с правилом знаков.

Правило знаков для внутренних усилий при изгибе

А теперь нарисуем, что получилось, немного упростив

Неправда ли, похож на улыбающийся смайлик — это правило знаков для положительного направления изгибающего момента для расчета балки на изгиб. Т.е. любое усилие, вызывающее изгиб балки таким образом, что балка изгибается выпуклостью вниз (веселый смайлик), т.е. растянутые волокна находятся внизу — это будет положительный момент.

Если же смайлик, под действием внешних сил, окажется грустным, как здесь, ниже:

Такие внешние усилия вызывают деформацию изгиба так, что растянутые волокна вверху — это будут изгибающие моменты со знаком минус.

Но пойдем дальше. Ведь наша цель расчет на прочность балки, а не правило знаков при изгибе.

Нами было получено сечение, в котором действуют как внешние, так и внутренние усилия, которые определяют прочность.

Запись аналитических выражений для эпюр внутренних усилий Q(x) и M(x)

Осталось записать внутренние усилия в виде зависимости изгибающего момента М(x) и поперечной силы Q(x). Рисунок, на котором видны эти внутренние усилия мы уже приводили:

Для определения поперечной силы будем использовать сумму проекций на вертикальную ось, а для определения момента возьмем момент относительно точки С.

Так будем всегда поступать при определении изгибающего момента при расчете балки на изгиб. Таким образом мы исключим из этого уравнения момент от Q(x). Связано это с тем, что плечо от Q(x) до точки C равно нулю, потому и момент будет ноль от этой силы.

сумма проекций на вертикальную ось:

Σ Oy: Q(x) — F = 0; ⇒ Q(x) = F;

сумма моментов относительно точки С:

Σ МС: -F · x — M(x) = 0; ⇒ M(x) = -F · x ;

Как видно из окончательных выражений мы получили уравнения для двух прямых линий.

Так как координат x в уравнение поперечной силы вообще не входит — то это уравнение прямой линии параллельной оси x . Т.е. при любом x поперечная сила равна F.

Так как в уравнении моментов координата x входит в первой степени — то это уравнение прямой линии наклоненной к оси x под углом.

Потому первая линия в школе записывалась в виде уравнения:

А вторая записывалась:

На графике же это выглядит так:

Таким образом для построения прямых линий достаточно найти на координатных осях две точки и провести прямые линии под линейку. При построении эпюр моментов и поперечных сил принято брать крайние точки, т.е. точки начала и конца участка этих линий.

Поэтому подставляем из пределов существования 0 ≤ x ≤ l сначала 0, а затем l .

M(x = 0) = -F · 0 = 0 ; ⇒ M(x = l ) = -F · l ;

Построение эпюр изгибающего момента и поперечной силы при изгибе

Полученные значения изгибающего момента и поперечной силы в двух сечениях (при положении x=0 и x=l) откладываем соответствующие ординаты, т.е. буквально строим графики обеих функций.

Что мы видим из построенных эпюр, какие выводы мы можем сделать:

  • из эпюры поперечной силы видно, что она не меняется по всей длине и равна внешней силе F
  • так как в начале координат x (т.е. справа) мы видим на эпюре «скачок» на величину этой силы, то в конце, в заделке скачок говорит о том, что реакция в заделке равна силе F
  • на эпюре моментов график выходит из нуля координаты x (справа на балке) и момент тоже равен нулю
  • по мере удаления сечения от силы влево момент растет и достигает своей наибольшей величины в заделке, где наблюдается такой же скачок как и на эпюре поперечной силы и равен (- F x). Это говорит о том, что момент в заделке равен именно этому значению

Когда график начинается не из нуля или не из значения полученного на предыдущем участке, а имеет в одном и том же сечении x два разных значения — такой разрыв функции называется скачок. Т.е. если рассматривать график бесконечно близко слева и бесконечно близко справа мы получаем два разных значения как поперечной силы, так и момента. И этот скачок для поперечной силы должен равняться приложенной сосредоточенной силе, а для момента приложенному сосредоточенному моменту.

Вот и все секреты построения эпюр для моментов и поперечных сил. Конечно дальше немного усложняется сам процесс, но принцип остается тот же.

Дальше в видео представлены примеры построения эпюр для распределенной нагрузки изгибающего момента. Чтобы было проще показать разницу все собрано в одном видео:

Примеры расчета на прочность консольных балок

Для консольных балок рассмотрим три варианта нагрузки и расчета на прочность от каждого из видов нагрузок. Приведу все расчеты в виде рисунков

Расчет консольной балки от сосредоточенной силы на прочность

пример расчета консольной балки на прочность при изгибе от сосредоточенной силы

Дифференциальное уравнение оси изогнутой балки

Для определения уравнения оси изогнутой балки воспользуемся законом Гука:

.

Выражение для кривизны некоторой кривой:

.

В пределах упругих деформаций квадрат угла поворота поперечного сечения балки ничтожно мал по сравнению с единицей. Поэтому (вторая производная от прогиба представляет собой кривизну изогнутой оси балки ( уравнение изгиба ) в рассматриваемом месте балки:.

Продифференцировав полученное уравнение дважды по z, получим дифференциальное уравнение оси изогнутой балки : .

Интегрирование дифференциального уравнения оси изогнутой балки

Интегрируя дифференциальное уравнение оси изогнутой балки первый раз, получим выражение, дающее закон изменения поперечной силы по длине балки.

Второе интегрирование дифференциального уравнения оси изогнутой балки определяет характер изменения изгибающего момента.

Третье интегрирование дифференциального уравнения оси изогнутой балки определяет характер изменения углов поворота поперечных сечений.

Четвертое интегрирование дифференциального уравнения оси изогнутой балки определяет закон изменения прогибов балки по ее длине.

Постоянные интегрирования определяются из условий закрепления балки.


источники:

http://stroymex.online/sopromat/raschot-balki-na-izgib

http://sopromato.ru/pryamoy-izgib/uravnenie-izgiba