Уравнение реакции синтеза аммиака из водорода

Аммиак: получение и свойства

Аммиак

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :

У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание . При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например , аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

Еще один пример : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.

NH3 + HCl NH4Cl

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов , образуя нерастворимые гидроксиды.

Например , водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – аминокомплексы.

Например , хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

Гидроксид меди (II) растворяется в избытке аммиака:

5. Аммиак горит на воздухе , образуя азот и воду:

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя , например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием . С металлами реагирует только жидкий аммиак.

Например , жидкий аммиак реагирует с натрием с образованием амида натрия:

Также возможно образование Na2NH, Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3 + 2Al → 2AlN + 3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например , аммиак окисляется хлором до молекулярного азота:

Пероксид водорода также окисляет аммиак до азота:

Оксиды металлов , которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например , оксид меди (II) окисляет аммиак:

2NH3 + 3CuO → 3Cu + N2 + 3H2O

4.2.2.1 Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола).

Производство аммиака

Промышленный синтез аммиака основан на прямом взаимодействии простых веществ — азота N2 и водорода H2. Азот, используемый при производстве аммиака, получают фракционной перегонкой жидкого воздуха, а водород – паровой конверсией угля или природного газа:

Рассмотрим уравнение взаимодействия азота с водородом:

Данная реакция является каталитической, т.е. ее скорость многократно возрастает в присутствии катализатора. В качестве катализатора синтеза аммиака из азот-водородной смеси используют катализатор на основе пористого железа.

Поскольку реакция взаимодействия азота с водородом является экзотермической, то для смещения равновесия в сторону образования аммиака процесс целесообразно проводить при низких температурах. Однако без нагревания скорость реакции взаимодействия азота с водородом ничтожно мала, поэтому для синтеза аммиака при выборе температурных условий приходится ориентироваться на «золотую середину». Такой «золотой серединой» является температура около 400-500 о С.

Негативным следствием использования высокой температуры является то, что равновесие реакции сильно смещается в сторону обратной реакции – разложения аммиака, вследствие чего падает его выход.

Согласно уравнению взаимодействия азота и водорода, при протекании реакции суммарное количество газообразных веществ уменьшается, ведь при взаимодействии 3 моль водорода и 1 моль азота (всего 4 моль) взамен образуется только 2 моль аммиака. Поэтому, исходя из принципа Ле Шателье, негативные эффекты, связанные с разложением аммиака, можно снизить, осуществляя процесс под высоким давлением. Давление азот-водородной смеси в колонне синтеза создается с помощью турбокомпрессора и составляет около 300 атм. Тем не менее, даже несмотря на использование колоссального давления, степень превращения азот-водородной смеси «за один заход» не превышает 20 %. Дальнейшее повышение давления по ряду причин невозможно, поэтому проблема низкого выхода решается довольно простым способом. Образовавшийся аммиак отделяется в сепараторе от непрореагировавшей азот-водородной смеси, а оставшаяся смесь направляется с помощью циркуляционного компрессора обратно в колонну синтеза вместе с новой порцией сырья. Такой прием носит название принципа циркуляции. Благодаря принципу циркуляции степень превращения азот-водородной смеси в аммиак удается повысить до 95%.

Производство серной кислоты

В качестве серосодержащего сырья для производства серной кислоты могут быть использованы сера или сероводород (побочные продукты нефтепереработки), минерал пирит FeS2, а также сульфиды некоторых других d-элементов. Никакие другие виды сырья не используются.

В настоящий момент основным сырьем для производства серной кислоты являются сероводород и сера, поскольку они в огромных количествах образуются в качестве побочных продуктов нефтепереработки.

Однако же в школьной программе пока еще по-прежнему считается, что серная кислота производится преимущественно из пирита, в связи с чем и мы будем рассматривать основные стадии производства серной кислоты именно этого же сырья.

Первая стадия

Заключается в сжигании предварительно измельченного пирита в токе обогащенного кислородом воздуха. Процесс протекает в соответствии с уравнением:

Обжиг осуществляют при температуре около 800 о С в печи для обжига. В процессе обжига используют так называемый метод кипящего слоя – частицы измельченного пирита подаются в печь сверху, а воздух — снизу. В результате этого раскаленные частицы пирита оказываются подвешенными в токе воздуха, внешне напоминая кипящую жидкость.

После обжига пирита полученный печной газ, содержащий диоксид серы, отделяется от твердых примесей огарка (Fe2O3) с помощью циклона. Циклоном называют аппарат, в котором происходит грубая очистка печных газов за счет центробежной силы от наиболее крупных твердых частиц. Далее после грубой очистки смесь газов проходит более глубокую очистку уже от оставшихся мелких твердых частиц с помощью электрофильтра. Принцип действия электрофильтра основан на том, что к наэлектризованным металлическим пластинам прилипает пыль, которая после скопления ссыпается с них под собственным весом в приемник.

После очистки от твердых примесей печной газ направляется в нижнюю часть так называемой сушильной башни, в верхнюю часть которой впрыскивается концентрированная серная кислота на встречу газу. При таком варианте осуществления фактически сталкиваются два потока — смеси газов, идущей снизу, и струи жидкой концентрированной серной кислоты, текущей сверху. Очевидно, что в результате этого достигается максимальная степень «смешения» газа с осушающей жидкостью. Данный прием носит название принципа противотока.

Вторая стадия

После очистки от твердых примесей и осушки концентрированной серной кислотой газы поступают в контактный аппарат. В контактном аппарате расположены полки с катализатором V2O5, который катализирует взаимодействие диоксида серы с кислородом в соответствии с уравнением:

Аналогично реакции взаимодействия азота с водородом, рассмотренной выше, данная реакция также является каталитической, экзотермической и протекает с уменьшением количества газообразных веществ. Поэтому с точки зрения принципа Ле Шателье ее следовало бы проводить при низких температурах. Однако при низких температурах скорость реакции крайне низка, и ее осуществляют при оптимальной температуре около 400-500 о С. Смещения равновесия реакции в сторону разложения SO3 при повышении температуры удается практически полностью избежать, проводя реакцию при повышенном давлении.

Третья стадия (заключительная)

После второй стадии образовавшийся триоксид серы поступает в часть установки, называемую поглотительной башней.

Из названия данного аппарата логичным было бы предположить, что триоксид серы в нем поглощается в этой части установки водой, ведь триоксид серы, взаимодействуя с водой, образует серную кислоту. Однако в реальности серный ангидрид SO3 поглощают не водой (. ), а концентрированной серной кислотой. Связано это с тем, что при смешении серного ангидрида с водой выделяется колоссальное количество теплоты, в результате чего сильно возрастают температура, давление и образуются мельчайшие капли трудноуловимого сернокислотного тумана.

В результате поглощения SO3 концентрированной серной кислотой фактически образуется раствор SO3 в безводной серной кислоте, который называют олеумом. Далее образующийся олеум собирается в металлические емкости и отправляется на склад. Серную кислоту необходимой концентрации получают, добавляя к олеуму воду в нужной пропорции. В результате добавления воды избыток SO3 превращается в серную кислоту.

Производство метанола

Производство метанола основано на реакции взаимодействия угарного газа CO с водородом H2, которая протекает в соответствии с уравнением:

Технологическая цепочка производства метанола практически идентична таковой для получения аммиака. Это обусловлено определенным сходством реакций. Так, например, реакции образования аммиака и метанола являются экзотермическими, обратимыми, каталитическими и протекают с уменьшением объема газообразных веществ.

В синтезе метанола из угарного газа и водорода используются все те же приемы, что и в синтезе аммиака из азот-водородной смеси, в частности:

  1. наличие катализатора в колонне синтеза;
  2. принцип теплообмена;
  3. использование высокого давления для повышения выхода продукта;
  4. использование высокой температуры для увеличения скорости реакции;
  5. принцип циркуляции.

Синтез аммиака

Что такое синтез аммиака

Синтез аммиака это взаимодействие азота с водородом в жестких условиях, поскольку реакция обратима весь процесс производят при нагревании до 500°, выше дает отрицательный вариант с меньшим выхода аммиака, также одним из условий синтеза повышенное давление, что хорошо сказывается на выходе NH3.

NH3 получение в лаборатории

Для опыта монтируют прибор, показанный на рисунке .

Проверяют прибор на герметичность. Пускают ток азота и водорода, следя за тем, чтобы число пузырьков этих газов, проходящих через промывные склянки 1 и 2 с концентрированной серной кислотой, относилось как 1 :3. Скорость поступления азота и водорода регулируют с помощью кранов или зажимов от газометра и аппарата Киппа.

Проверяют полноту вытеснения воздуха из установки (поджиганием в пробирке газа, собранного у газоотводной трубки 7) и отсутствие аммиака в исходной азотоводородной смеси (лак мусом или фенолфталеином). Включают электрический ток и следят, чтобы в трубке-реакторе 3 спираль 4 с катализатором раскалилась докрасна.

Рис. Установка для синтеза аммиака:

1, 2 —промывные склянки, 3 — трубка-реактор, 4 электроспираль, 5, 7 — газоотводные трубки, 6 — дугообразная трубка.

Азотоводородная смесь, проходя над спиралью с катализатором без нагревания, не образует даже следов аммиака. Аммиак появляется, когда катализатор нагревается.

После появления окраски в дугообразной трубке 6 с фенолфталеином ее отключают и к отверстию газоотводной трубки 5 подносят стеклянную палочку, смоченную концентрированной соляной кислотой (или влажную лакмусовую бумагу красного цвета). Для окончания опыта выключают электрический ток, закрывают кран аппарата Киппа, продолжая некоторое время пропускать азот до полного удаления из аппарата водорода и охлаждения катализатора.

Синтез аммиака — обратимая экзотермическая реакция:

Для начала реакции необходимо нагревание, осуществляемое накаливанием электроспирали до красного цвета (около 400°С). (При очень сильном нагревании аммиак не образуется.) Обнаружение аммиака подтверждается следующими реакциями: а) в растворе с помощью фенолфталеина:

б) в воздухе (по образованию белого дыма в присутствии концентрированной соляной или азотной кислот):

Меры предосторожности. Водород необходимо проверить на чистоту.

В такой же реакционной трубке можно осуществить опыт разложения аммиака и обнаружить образовавшийся водород. С этой целью пропускают аммиак над нагретой спиралью с катализатором, собирают продукты разложения и испытывают их на горючесть.

Физические свойства аммиака

Горючий бесцветный газ. Мол. масса 17,03; температура кипения — 33,4 °С; плотность по воздуху 0,597; коэф. диф. газа в воздухе 0,198 см 2 /с; тепл. cгop. —316,5 кДж/моль; растворимость в воде 34,2% (масс). Т. самовоспл. 650 °С; конц. пределы распр. пл. в воздухе 15—28% (об.), в кислороде 13,5—79% (об.); миним. энергия зажигания 680 мДж; макс. давл. взрыва 588 кПа; МВСК 16,2% (об,); ад. т. гор. 1777 К; норм, скорость распр. пл. 0,23 м/с при 150 °С.

Аммиачная вода

Водный раствор аммиака, не способна к горению; над ее поверхностью возможно образование взрывоопасной смеси аммиака с воздухом. Показатели пожарной опасности приведены в табл.

Таблица . Показатели пожаровзрывоопасности аммиачной воды

Концентрации раствора, % (масс.) Температура самовоспламенения, °С Температурные пределы распр. пл., °С
нижний верхний
15 27>750 >75023 -233 10

В открытых сосудах и при разливе в помещении вероятность создания взрывоопасной концентрации практически отсут.

Аммиачно водородные смеси

Горючи. В табл. 2. приведены значения конц. пределов распр, пл. по газовоздушным смесям различного состава при нормальных условиях.

Значения верхних пределов распр. шл. аммиачно водородных смесей в воздухе, обогащенном кислородом, приведены в табл. 3.

Таблица 2 . Показатели, пожаровзрывоопасности аммиачно водородных смесей

Состав горючей смеси. % (об.) Конц. пределы распр. пл., % (об.)
аммиак водород нижний верхний
10001528
901011,531,3
80209,234,9
70307,338,5
60406,343,7
50505,747
40605,251,2
30704,656,2
20804,361,6
10904,0267,1
59571,5

Таблица 3. Верхние пределы распространения пламени аммиачно-водородных смесей

Состав горючей смеси, % (об.) Верхние пределы распр. пл., % (об.), при содержании кислорода в воздухе, % (об.)
аммиак водород283643,752
100039,5495762
80205762,5
60406470
406070,474,5
20807880

Также в лабораторных условиях можно получить аммиак нагревание нашатыря с гашеной известью Са(ОН)2 Реакция выражается уравнением

Выделяющийся аммиак содержит пары воды. Для осушения его пропускают через склянку с натронной известью (смесь извести с едким натром).

Многие нитриды полностью гидролизуются водой с образова нием аммиака и гидроокиси металла. Например;

Цель статьи

В данной статье мы узнали методы и способы образования NH3 , в лабораторных условиях, рассмотрели синтез аммиака с помощью аппарата Киппа, узнали пажароопасность аммиачно водородных смесей

Статья на тему Синтез аммиака

Похожие страницы:

Понравилась статья поделись ей

Leave a Comment

Для отправки комментария вам необходимо авторизоваться.


источники:

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/nauchnye-principy-himicheskogo-proizvodstva

http://znaesh-kak.com/x/h/%D1%81%D0%B8%D0%BD%D1%82%D0%B5%D0%B7-%D0%B0%D0%BC%D0%BC%D0%B8%D0%B0%D0%BA%D0%B0