Уравнение реакции соляной кислоты с оксидом металла

Взаимодействие кислот с оксидами металлов

Разделы: Химия

Цель урока:

  1. Знакомство учащихся еще с одним свойством кислот — взаимодействие их с оксидами металлов:
    а) значение реакции обмена между кислотами и оксидами
    б) очистка поверхности металла от ржавчины
  2. Проверить и закрепить полученные знания и умения:
    а) типы химических реакций
    б) свойства кислот
  3. Обобщение полученных знаний.
  4. Закрепление знаний учащихся .
  5. Подготовка к практической работе.

Методы работы:

Беседа. Демонстрация опыта: взаимодействие серной кислоты с оксидом меди(II) . Лабораторные опыты. Взаимодействие соляной кислоты с оксидом магния. Демонстрация опыта. Пропускание оксида углерода (IV) через раствор серной кислоты. Обобщение и наблюдение.

  1. Какие известные вам кислоты?
  2. Сравните свойства серной и соляной кислот.
  3. Какое правило нужно соблюдать при использовании серной кислоты в воде?
  4. Назовите общие свойства кислот. Ответ поясните примерами.
  5. Перед вами две кислоты:
    а) обратите внимание на их признаки;
    б) по этим признакам назовите каждую;
    в) запишите их формулы.
  6. Приводятся формулы различных веществ:
    а) выпишите из них формулы кислот и назовите их.
    б) подчеркните формулы бескислородных кислот: Cu (OH)₂‚ HCl‚ CO₂‚ P₂O₅‚ H₃PO₄‚ KOH‚ H₂SO₄‚H₂S‚ Al₂O₃‚ H₂SO₃‚ CuSO₄‚ HNO₃.
    в) определите валентность кислотных остатков.
  7. Пойдут ли реакции:
    а) между медью и соляной кислотой;
    б) между цинком и соляной кислотой;
    в) между железом и разбавленной серной кислотой?
    Какой этот тип химической реакции?
  8. Какие известны еще типы химических реакции? Приведите примеры.

Урок начинается с постановки «проблем».

  1. Взаимодействуют ли кислоты с оксидами металлов, неметаллов?
  2. Как получить соль металла, не вытесняющего водород из кислоты? Объяснить на примере получения сульфата меди (II).

Решаем первый вопрос: будут ли реагировать кислоты с оксидами металлов? Демонстрация опыта. Взаимодействие оксида меди с серной кислотой.

Показать оксид меди, серную кислоту и предложить учащимся описать их свойства. Затем учитель наливает в стакан объемом 150-200мл. 20-25мл. серной кислоты(1:5), высыпает ложку оксида меди (II), перемешивает. Происходят ли какие изменения? Заметных изменений нет. Нагреваем. Что наблюдаем?

Раствор становится голубым, черный порошок на дне стакана растворился. Добавляем еще немного оксида и перемешиваем до полного его растворения. Добавление оксида меди прекращаем до того, когда новая порция не остается на дне стакана не растворившейся. И только тогда приливаем немного воды.

Что представляет собой раствор голубого цвета? Как выделить образовавшееся вещество из раствора?

  1. Показать фильтрование горячего раствора:
    а) приготовление фильтра.
    б) правила фильтрования.
  2. Выпаривание филтрата в фарфоровой чашке.

Обратить внимание на некоторые трудности выпаривания – соль разлетается, чтобы этого избежать, нужно особенно подчеркивать, что раствор надо перемешивать и выпаривать только до появления первых кристаллов, а не досуха.

На доске записываем уравнение реакции:

CuO+H₂SO₄= CuSO₄ + H₂O

Можно ли отнести эту реакцию к одному из известных вам типов?

Атомы меди и водорода поменялись местами. Это реакция обмена. Реакцией обмена называются реакции между двумя сложными веществами, при которых они обмениваются своими составными частями.

Вывод учащихся: при взаимодействии серной кислоты с оксидом меди, получается соль и вода.

Могут ли другие кислоты реагировать с оксидами?

Учащиеся выполняют лабораторные опыты:

  1. Взаимодействие соляной кислоты с оксидом железа (III).(оксид железа должен быть в виде буро-красного порошка. Темно-серая кристаллическая модификация почти не растворятся в кислотах).
  2. Взаимодействие оксида магния с соляной кислотой.

Реакция металлов с соляной кислотой: признак взаимодействия цинка, железа и меди

Известно доказанный факт, что соляная кислота взаимодействует с активными металлами. При этом часть веществ способна реагировать на такое соединение, другая часть остается нетронутой.

Неактивные металлы не могут реагировать на вещество: к ним относят золото, серебро, ртуть.

Соляная кислота представляет собой соединение хлора и водорода. Путем растворения в воде газообразного вещества под названием хлороводород получается данное соединение.

Ионы водорода при таком уравнении исполняют роль окислителя, что вызывает реакцию у активных металлов.

Какие вещества вступают в реакцию с соляной кислотой

На вступительных экзаменах по химии часто можно встретить задание на определение веществ, которые способны реагировать на соляную кислоту.

Кроме того, задание «составьте уравнение» нередко вызывает страх в глазах выпускников.

Чтобы не путаться с химическими задачами, рекомендуется подробнее изучить информацию о взаимодействии с данным соединением.

Все существующие вещества можно поделить на металлы, вытесняющие водород из соединения, не вытесняющие водород, а также активные и неактивные металлы.

В реакцию с соляной кислотой вступают такие вещества:

    Химические основания. Соляная кислота способна нейтрализовать основания. Как известно, они состоят из атома металла, на который и воздействует кислота.

К ним относят гидроксид натрия, бария, алюминия. Реакция нейтрализации дает образования соли и воды.
Металлы. Если обратиться к электрохимическому ряду, можно увидеть, что соляная кислота реагирует со всеми элементами, стоящими до водорода в этом ряду.

Сюда относят натрий, магний, алюминий, литий, барий, кальций, цинк, железо и другие элементы. При взаимодействии они образуют хлориды и выделяют газообразный водород.

  • Основные и атмосферные оксиды. Во время реакции происходит образование растворимых солей и воды. HCl взаимодействует с оксидом алюминия, меди, цинка, натрия.
  • Карбонаты. При взаимодействии с карбонатами кальция получится следующее уравнение: Ca­CO₃ + 2HCl→ Ca­Cl₂ + CO₂↑ + H₂O.

    Из него следует, что выделяется углекислый газ, а также образуется вода и угольная кислота.

  • Сильные окислители. Если вещество взаимодействует с перманганатом калия или диоксидом марганца, на выходе получается выделение газообразного хлора.
  • Аммиак. Такое взаимодействие ознаменовано выделением сильного дыма, поэтому в момент проведения опытов рекомендуется открыть все окна. Тогда выделяется хлорид аммония.
  • Признак взаимодействия с цинком, железом и другими металлами

    Если курс школьной химии был успешно забыт, можно вспомнить о том, какие бывают признаки взаимодействия металлов, вступающих в реакцию с соляной кислотой.

    Чтобы экспериментальные опыты не вызвали несчастного случая, рекомендуется заранее открыть все окна, вооружиться защитной одеждой, чтобы кожа рук была закрыта.

    Также рекомендуется использовать перчатки и повязку на лицо.

    Обратите внимание! Ниже будет рассказано о том, какие признаки говорят о вступлении в реакцию элементов с соединением.

    Чтобы не проводить наглядные опыты, можно воспользоваться теоретической информацией.

    Рассмотрим, что происходит, если добавить немного кислоты на определенный вид металла:

    МеталлПризнак взаимодействия
    ЦинкЕсли опустить этот металл серебристого цвета в пробирку с указанным веществом, можно постепенно наблюдать выделение небольшого количества пузырьков и водорода.

    В результате возникает хлорид цинка Zn­Cl₂ЖелезоВо время такого взаимодействия образуется хлористое железо.

    Реакция происходит медленно, однако, если пробирку подогреть, то процесс пойдет быстрееЛитийПри реакции образуется хлорид лития 2Li­Cl, выделяется водород.

    На поверхности этого металла, относящегося к щелочной группе, можно увидеть маленькие пузыриКремнийВ результате такого соединения возникает сложный компонент под названием хлорсилан.

    Также выделяется газообразный водород. Такая реакция происходит при условии нагревания до 350 градусов, а в качестве катализатора выступает медьМагнийПри таком взаимодействии наблюдает выделение теплоты, металл начинает плавиться

    Как составить уравнение реакции

    Одно из самых распространенных заданий на экзаменах и в контрольных работах – составить уравнение на реакцию HCl, в данном случае – соляной, с другими веществами или соединениями.

    Чтобы не запутаться в решении, предлагаем несколько советов и шпаргалок для легкого запоминания:

    • Запомните буквенное обозначение данного вещества – соляная кислота в химии обозначается как HCl: если вещество разбавленное, это указывается в скобках рядом.
    • Как уже было сказано выше, вещество способно реагировать с активными металлами, стоящими до водорода в электрохимическом ряду; кроме того, она реагирует на основания, оксиды, гидроксиды и карбонаты.
    • Химические основания обозначаются как OH, оксиды – O, гидроксиды – OH2, карбонаты – CO3.
    • Уравнение реакции всегда будет иметь знак +, потому как в процессе взаимодействия происходит соединение нескольких компонентов.
    • HCl может идти первым или вторым слагаемым, после прибавления металла, вещества идет знак =, после этого описывается реакция, где указаны продукты распада.
    • Например, при реакции кислоты серы с сульфатом магния получается такое уравнение: Mg+H2SO4 = MgSO4+H2.
    • Соляная кислота и гидроксид бария дают такое уравнение: 2HCl + Ba(OH)2 = BaCl2 + 2H2O.
    • При реакции соединения водорода, хлора и мела образуется хлорид кальция: СаСО3 + 2HCl = CaCl2 + СО2 + Н2О.
    • Раствор карбоната натрия с кислотой выглядит так: HCl+Na2CO3=2NaCl+H2O+CO2.

    Составить уравнение несложно, важно изначально правильно обозначить буквенные символы каждого элемента или вещества.

    Для правильного уравновешивания формулы пользуются правилами школьного курса химии, основанными на математическом принципе расстановки коэффициентов.

    Полезное видео

    Уравнение реакции соляной кислоты с оксидом металла

    ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ

    Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 . Далее рассмотрим отношение различных металлов к перечисленным кислотам.

    Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl . Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:

    HCl H + + Cl —

    Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода. Взаимодействие протекает по схеме:

    Me + HCl соль + H 2

    При этом соль представляет собой хлорид металла ( NiCl 2 , CaCl 2 , AlCl 3 ), в котором число хлорид-ионов соответствует степени окисления металла.

    Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления:

    2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

    2│ Al 0 – 3 e — → Al 3+ — окисление

    3│2 H + + 2 e — → H 2 – восстановление

    Соляная кислота пассивирует свинец ( Pb ). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца ( II ), который защищает металл от дальнейшего воздействия кислоты:

    В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.

    Разбавленная серная кислота

    В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:

    H2SO4 H + + HSO4

    HSO4H + + SO4 2-

    Образующиеся ионы Н + выполняют функцию окислителя.

    Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).

    Химическая реакция протекает по схеме:

    1│2Al 0 – 6e — → 2Al 3+ — окисление

    3│2 H + + 2 e — → H 2 – восстановление

    Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления:

    Свинец ( Pb ) не растворяется в серной кислоте (если ее концентрация ниже 80%) , так как образующаяся соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

    Концентрированная серная кислота

    В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера, находящаяся в высшей степени окисления ( S +6 ). Концентрированная H 2 SO 4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO 4 2- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

    Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:

    Me + H 2 SO 4 (конц.) соль + вода + продукт восстановления H 2 SO 4

    Продуктами восстановления серной кислоты могут быть следующие соединения серы:

    Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H 2 S , S и SO 2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла: чем выше активность, тем глубже процесс восстановления серы в серной кислоте.

    Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:

    Алюминий ( Al ) и железо ( Fe ) не реагируют с холодной концентрированной H 2 SO 4 , покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.

    Концентрированная серная кислота является сильным окислителем, поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты:


    источники:

    http://ladyvapm.com/house/solyanaya-kislota-reakcii.html

    http://www.chem-astu.ru/chair/study/metals/5_Metals-Acids.shtml