Уравнение реакции углекислый газ диэтиловый эфир

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Этиловый эфир, свойства, структура, получение, использование

этиловый эфир, также известный как диэтиловый эфир, является органическим соединением, химическая формула которого C4H10О. Он характеризуется тем, что является бесцветной и летучей жидкостью, поэтому его бутылки должны быть как можно плотнее закрыты..

Этот эфир классифицируется как член диалкиловых эфиров; то есть они имеют формулу ROR ‘, где R и R’ представляют разные углеродные сегменты. И как он описывает свое второе имя, диэтиловый эфир, это два радикала-этила, которые связываются с атомом кислорода.

Первоначально этиловый эфир использовался в качестве общего анестетика, введенного в 1846 году Уильямом Томасом Грином Мортоном. Однако, из-за его воспламеняемости, его использование было отклонено, заменив его другими менее опасными анестетиками..

Это соединение также использовалось для оценки времени кровообращения, при оценке состояния сердечно-сосудистой системы пациентов..

В организме диэтиловый эфир может превращаться в углекислый газ и метаболиты; последние в конечном итоге выводятся с мочой. Однако большая часть вводимого эфира выдыхается в легких без каких-либо изменений..

С другой стороны, он используется в качестве растворителя для мыла, масел, парфюмерии, алкалоидов и камеди.

  • 1 Структура этилового эфира
    • 1.1 Межмолекулярные силы
  • 2 Физические и химические свойства
    • 2.1 Другие имена
    • 2.2 Молекулярная формула
    • 2.3 Молекулярный вес
    • 2.4 Внешний вид
    • 2.5 Запах
    • 2.6 Вкус
    • 2.7 Точка кипения
    • 2.8 Точка плавления
    • 2.9 Температура вспышки
    • 2.10 Растворимость в воде
    • 2.11 Растворимость в других жидкостях
    • 2.12 Плотность
    • 2.13 Плотность пара
    • 2.14 Давление пара
    • 2.15 Стабильность
    • 2.16 Автоматическое зажигание
    • 2.17 Разложение
    • 2.18 Вязкость
    • 2.19 Теплота сгорания
    • 2.20 Тепло испарения
    • 2.21 Поверхностное натяжение
    • 2.22 Потенциал ионизации
    • 2.23 Порог запаха
    • 2.24 Показатель преломления
  • 3 Получение
    • 3.1 Из этилового спирта
    • 3.2 Из этилена
  • 4 Токсичность
  • 5 использует
    • 5.1 Органический растворитель
    • 5.2 Общая анестезия
    • 5.3 Дух эфира
    • 5.4 Оценка кровообращения
    • 5.5 Учебные лаборатории
  • 6 Ссылки

Структура этилового эфира

На изображении выше мы имеем представление с моделью сфер и стержней молекулярной структуры этилового эфира.

Как видно, красная сфера, соответствующая атому кислорода, имеет две этильные группы, связанные с обеих сторон. Все звенья простые, гибкие и свободно вращаются вокруг осей σ.

Эти вращения происходят из стереоизомеров, известных как конформеры; что больше, чем изомеры, они являются альтернативными пространственными состояниями. Структура изображения точно соответствует антиконформеру, в котором все его группы атомов расположены в шахматном порядке (отделены друг от друга).

Каким был бы другой конформер? Затмение, и хотя ваше изображение недоступно, просто визуализируйте его с помощью формы U. На верхних концах U будут расположены метильные группы -CH3, которые будут испытывать стерические отталкивания (они сталкиваются в космосе).

Следовательно, ожидается, что молекула СН3СН2ОСН2СН3 принять анти-конформации большую часть времени.

Межмолекулярные силы

Какими межмолекулярными силами управляют молекулы этилового эфира в жидкой фазе? Они поддерживаются в жидкости главным образом благодаря дисперсионным силам, поскольку в их дипольном моменте (1,5D) отсутствует область, достаточно дефицитная по электронной плотности (δ +).

Это потому, что ни один атом углерода в этильных группах не дает слишком много электронной плотности для атома кислорода. Сказанное выше видно на карте электростатического потенциала этилового эфира под рукой (нижнее изображение). Обратите внимание на отсутствие синей области.

Кислород также не может образовывать водородные связи, опять же, потому что в молекулярной структуре нет доступных О-Н связей. Следовательно, мгновенные диполи и их молекулярная масса способствуют их силам рассеивания..

Несмотря на это, он хорошо растворяется в воде. Почему? Поскольку его атом кислорода, с более высокой электронной плотностью, может принимать водородные связи от молекулы воды:

Эти взаимодействия ответственны за растворение 6,04 г этого эфира в 100 мл воды..

Уравнение реакции углекислый газ диэтиловый эфир

Простыми эфирами называют органические вещества, в которых два углеводородных радикала связаны атомом кислорода: R’–O–R», где R’ и R» — различные или одинаковые радикалы.

Простые эфиры могут быть предельными, непредельными, циклическими, ароматическими.

предельные

непредельные

ароматические

циклические

Простые эфиры рассматриваются как производные спиртов. Названия этих соединений строятся из названий радикалов (в порядке возрастания молекулярной массы) и слова «эфир». Например, CH3-O-CH3 — диметиловый эфир; C2H5-O-CH3 — метилэтиловый эфир.

Физические свойства

Два первых простейших представителя – диметиловый и метилэтиловый эфиры – при обычных условиях газы, все остальные – жидкости.

Диэтиловый эфир (C2H5-O-C2H5)– бесцветная легкокипящая прозрачная жидкость (t кип. 35,5 °С), малорастворимая в воде. С этиловым спиртом смешивается в любых отношениях. Температура воспламенения – 9,4°С, образует с воздухом взрывоопасную смесь. Вызывает набухание резин. Широко применяется в качестве растворителя, в медицине (ингаляционный наркоз), вызывает привыкание человека, ядовит.

Диоксан (т. кип. 101°С) — хороший растворитель, смешивается как с водой, так и с углеводородами. За эти качества его назвали «органической водой». Достаточно токсичен. Значительно более опасны галогенсодержащие дибензопроизводные диоксана: диоксин (2,3,7,8-тетрахлордибензо-п-диоксин).

Простые эфиры имеют более низкие температуры кипения и плавления, чем изомерные им спирты. Эфиры практически не смешиваются с водой. Это объясняется тем, что простые эфиры не образуют водородных связей, т.к. в их молекулах отсутствуют полярные связи О-Н.

Простые эфиры хорошо растворяют многие органические вещества и поэтому часто используются как растворители.

Эфиры имеют приятный запах.

Химические свойства

Простые эфиры — малоактивные соединения, они значительно менее реакционноспособны, чем спирты.

1.Расщепление простых эфиров HJ и HBr

Простые эфиры разлагаются под действием концентрированных иодоводородной или бромоводородной кислот:

2. Образование комплексных соединений

Образование нестойких солей оксония (подобных солям аммония) в результате взаимодействия с сильными кислотами:

3. Окисление эфиров, образование перекисей

Несмотря на относительную химическую инертность, эфиры легко образуют при хранении на воздухе перекиси:

Перекиси являются причиной взрывов в конце перегонки эфиров, поэтому эфиры тщательно очищают от перекисей перед перегонкой и применением.

Получение

1. Межмолекулярная дегидратация спиртов

Симметричные простые эфиры R–O–R получают при межмолекулярной дегидратации спиртов:

При этом в одной молекуле спирта разрывается связь О-Н, а в другой — связь С-О. Реакцию можно рассматривать как нуклеофильное замещение группы HО – (в одной молекуле спирта) на группу RO – (от другой молекулы):

2. Взаимодействие галогенпроизводных с алкоголятами (реакция Вильямсона)

Эфиры несимметричного строения R–O–R’ образуются при взаимодействии алкоголята и галогенуглеводорода. Например, метилэтиловый эфир можно получить из этилата натрия и хлорметана:

В этой реакции происходит нуклеофильное замещение галогена (Cl – ) на алкоксигруппу (CH3O – ):

3. Дегидратация спиртов в присутствии ионов водорода как катализаторов

4. Получение гетероцикических кислородсодержащих соединений (циклические простые эфиры) этиленоксид (эпоксид) диоксан

Применение

Вследствие относительной химической инертности, эфиры часто применяются в качестве органических растворителей (диэтиловый эфир, тетрагидрофуран, диоксан).

Эфиры с разветвленными алкильными радикалами (например, метил-трет-бутиловый эфир) используются в последнее время в качестве антидетонационных добавок в моторные топлива (бензины), заменяя чрезвычайно вредный тетраэтилсвинец (ТЭС) — Pb (CH3CH2)4.

Простые эфиры фенолов и нафтолов имеют своеобразные запахи и применяются в парфюмерии.


источники:

http://ru.thpanorama.com/articles/qumica/ter-etlico-propiedades-estructura-obtencin-usos.html

http://himija-online.ru/organicheskaya-ximiya/efiry/prostye-efiry.html