Уравнение реакции воды с бензойной кислотой

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Бензойная кислота

Бензойная кислота — органическое соединение, самая ароматическая одноосновная карбоновая кислота состава С 6 Н 5 СООН. При обычных условиях кислота представляет собой бесцветные кристаллы, хорошо растворимые в эфире, спиртах, хлороформе, мало растворимыми в воде. Кислота образует ряд солей — бензоат.

Срок бензойная кислота соединения происходит от названия бензойной смолы, которую выделяли из деревьев стиракс в Юго-Восточной Азии. Впервые кислота была выделена в чистом виде и описана французским алхимиком Блезом где Виженер в 16 веке — путем дистилляции бензоина. В 1832 году Фридрих Велер и Либих синтезировали бензойную кислоту с бензальдегида и установили ее формулу.

Бензойная кислота и ее производные широко распространены в природе. Так, смола бензоин содержит 12-18% бензойной кислоты, а также значительное количество ее эфиров. Также эти соединения содержатся в коре, листьях, плодах вишни и чернослива.

Физические свойства

Бензойная кислота являются прозрачными, игловидными кристаллами. Имеет температуру кипения 249,2 ° C, но кристаллы могут сублимироваться уже при 100 ° C.

Кислота слабо растворяется в воде, и хорошо — в органических растворителях.

Растворимость бензойной кислоты в органических растворителях при 25 ° C, г / 100 г

Ацетон55,60
Бензол12,17
Тетрахлорметан4,14
Этанол58,40
Гексан0,94 (при 17 ° C)
Метанол71,50 (при 23 ° C)
Толуол10,60

Получение

Промышленный метод

Почти вся получаемая в промышленных масштабах бензойная кислота синтезируется путем каталитического окисления толуола:

Ее разработали на немецком предприятии IG Farbenindustrie в годы Второй мировой войны. Реакцию проводят при следующих условиях:

    давление в реакторе — 200-700 кПа (

2-7 атм)

  • температура в реакторе — 136-160 ° C
  • концентрация катализатора — 25-1000 мг / кг
  • концентрация продукта — 10-60%
  • К исходному сырью предъявляются требования высокой чистоты — примеси серы, азота, фенолов и олефинов могут замедлять ход окисления. Катализатором зачастую являются соли кобальта: нафтенат, ацетат, октоат. В качестве сокатализатор также применяются добавки марганца, однако в таком случае равновесие реакции будет нарушена и станет значительным образования побочного продукта — бензальдегида. Использование бромидов (например, бромид кобальта) позволяет существенно увеличить эффективность окислительных процессов в системе, но такие добавки вызывают высокую коррозионную действие и требуют установки дорогостоящего оборудования из титана.

    Степень превращения толуола составляет 50%, из которых 80% являются бензойной кислотой.

    Ежегодный объем производства бензойной кислоты составляет 750 тыс. Тонн.

    Лабораторные методы

    При обработке бензальдегида водно-спиртовым раствором щелочи (например, 50% KOH), он диспропорционирует с образованием бензойной кислоты и бензилового спирта:

    Бензойную кислоту можно получить карбоксилирования магний- или литийорганичних соединений, например, фенилвмисного реактива Гриньяра C 6 H 5 MgBr (в эфире):

    Кислота образуется при гидролизе бензоилхлорида:

    Другим методом является синтез кислоты с бензола — путем ацилирования его фосгеном в присутствии хлорида алюминия (реакция Фриделя — Крафтса):

    Химические свойства

    Бензойная кислота проявляет все свойства карбоновых кислот: образование эфиров при взаимодействии со спиртами, образования амидов и тому подобное.

    Бензойная кислота устойчива к действию многих окислителей: воздух, перманганат, гипохлоритов. Однако, при нагревании свыше 220 ° C она взаимодействует с солями меди (II), образуя фенол и его производные. В результате взаимодействия кислоты с аммиаком образуется анилин.

    Нагрев бензойную кислоту до 370 ° C в присутствии катализатора (медный или кадмиевый порошки), происходит декарбоксилирование, что ведет к бензола на незначительных количеств фенола.

    При участии катализатора оксида циркония бензойную кислота может гидруватися к бензальдегида с количественным выходом. А гидрирования в присутствии благородных металлов ведет к образованию циклогексанкарбоновои кислоты (гексагидробензойнои).

    Хлорирование соединения дает продуктом преимущественно 3-хлоробензойну кислоту. Нитрования и сульфирования происходит аналогично по третьему положением.

    Токсичность

    Бензойная кислота является веществом средней токсичности. Ежедневные дозы кислоты до 5-10 мг / кг не имеют влияния на здоровье.

    Вещество может подразюваты слизистые оболочки человека, поэтому при работе с кислотой необходимо пользоваться для защиты органов дыхания.

    Применение

    Основная часть получаемой бензойной кислоты применяется в производстве капролактама и вискозы; некоторые предприятия, синтезирующих данные речовны имеют собственные мощности для получения бензойной кислоты. Также значительным является использование кислоты в производстве ее солей — бензоат: бензоата калия, натрия, кальция и тому подобное. Данные соединения нашли широкое применение в качестве пищевых и косметических консервантов, ингибиторов коррозии.

    С 1909 бензойную кислоту разрешено использовать в продуктах питания, где она выполняет функции консерванта в концентрации не более 0,1%. В реестре пищевых добавок Европейского Союза бензойная кислота имеет код E210.

    Бензойная кислота является сырьем для производства красителей, например, анилинового синего и некоторых антрахиноновых красителей.

    Также незначительным является применение бензойной кислоты в медицине: кислота используется в изготовлении противомикробным и фунгицидным препаратов.

    Химические свойства аренов

    Арены (ароматические углеводороды) – это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

    Общая формула: CnH2n–6 при n ≥ 6.

    Химические свойства аренов

    Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

    Для ароматических углеводородов характерны реакции:

    • присоединения,
    • замещения,
    • окисления (для гомологов бензола).
    Из-за наличия сопряженной π-электронной системы молекулы ароматических углеводородов вступают в реакции присоединения очень тяжело, только в жестких условиях — на свету или при сильном нагревании, как правило, по радикальному механизму
    Бензольное кольцо представляет из себя скопление π-электронов, которое притягивает электрофилы. Поэтому для ароматических углеводородов характерны реакции электрофильного замещения атома водорода у бензольного кольца.

    Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

    1. Реакции присоединения

    Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

    1.1. Гидрирование

    Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.).

    При гидрировании бензола образуется циклогексан:

    При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

    1.2. Хлорирование аренов

    Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре, под действием ультрафиолетового излучения.

    При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

    Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

    Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C), то происходит замещение атомов водорода в боковом алкильном заместителе, а не в ароматическом кольце.

    Например, при хлорировании толуола на свету образуется бензилхлорид

    Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).
    Например, этилбензол реагирует с хлором на свету

    2. Реакции замещения

    Реакции замещения у ароматических углеводородов протекают по ионному механизму (электрофильное замещение). При этом атом водорода замещается на другую группу (галоген, нитро, алкил и др.).

    2.1. Галогенирование

    Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl3, FeBr3).

    При взаимодействии с хлором на катализаторе AlCl3 образуется хлорбензол:

    Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr3 . Также в качестве катализатора можно использовать металлическое железо.

    Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

    Гомологи бензола содержат алкильные заместители, которые обладают электронодонорным эффектом: из-за того, что электроотрицательность водорода меньше, чем углерода, электронная плотность связи С-Н смещена к углероду.

    На нём возникает избыток электронной плотности, который далее передается на бензольное кольцо.

    Поэтому гомологи бензола легче вступают в реакции замещения в бензольном кольце. При этом гомологи бензола вступают в реакции замещения преимущественно в орто— и пара-положения
    Например, при взаимодействии толуола с хлором образуется смесь продуктов, которая преимущественно состоит из орто-хлортолуола и пара-хлортолуола

    Мета-хлортолуол образуется в незначительном количестве.

    При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300 о С) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

    Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

    Например, при хлорировании этилбензола:

    2.2. Нитрование

    Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

    При этом образуется нитробензол:

    Серная кислота способствует образованию электрофила NO2 + :

    Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

    В продуктах реакции мы указываем либо о-нитротолуол:

    Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

    2.3. Алкилирование ароматических углеводородов

    • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.
    Например, бензол реагирует с хлорэтаном с образованием этилбензола

    • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.
    Например, бензол реагирует с этиленом с образованием этилбензола

    Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)

    • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.
    Например, бензол реагирует с этанолом с образованием этилбензола и воды

    2.4. Сульфирование ароматических углеводородов

    Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

    3. Окисление аренов

    Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

    3.1. Полное окисление – горение

    При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

    Уравнение сгорания аренов в общем виде:

    При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

    Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

    3.2. О кисление гомологов бензола

    Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

    При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

    Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

    Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

    Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

    При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.
    Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ

    Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

    Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

    При окислении пропилбензола образуются бензойная и уксусная кислоты:

    Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

    4. Ориентирующее действие заместителей в бензольном кольце

    Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

    Заместители подразделяют на две группы в зависимости от их влияния на электронную плотность ароматической системы: электронодонорные (первого рода) и электроноакцепторные (второго рода).

    Типы заместителей в бензольном кольце

    Заместители первого родаЗаместители второго рода
    Дальнейшее замещение происходит преимущественно в орто— и пара-положениеДальнейшее замещение происходит преимущественно в мета-положение
    Электронодонорные, повышают электронную плотность в бензольном кольцеЭлектроноакцепторные, снижают электронную плотность в сопряженной системе.
    • алкильные заместители: СН3 –, С2Н5 – и др.;
    • гидроксил, амин: –ОН , –NН2;
    • галогены: –Cl, –Br
    • нитро-группа:– NO2, – SO3Н;
    • карбонил – СНО;
    • карбоксил: – СООН, нитрил: – СN;
    • – CF3
    Например, толуол реагирует с хлором в присутствии катализатора с образованием смеси продуктов, в которой преимущественно содержатся орто-хлортолуол и пара-хлортолуол. Метильный радикал — заместитель первого рода.

    В уравнении реакции в качестве продукта записывается либо орто-толуол, либо пара-толуол.

    Например, при бромировании нитробензола в присутствии катализатора преимущественно образуется мета-хлортолуол. Нитро-группа — заместитель второго рода


    5. Особенности свойств стирола

    Стирол (винилбензол, фенилэтилен) – это производное бензола, которое имеет в своем составе двойную связь в боковом заместителе.

    Общая формула гомологического ряда стирола: CnH2n-8.

    Молекула стирола содержит заместитель с кратной связью у бензольного кольца, поэтому стирол проявляет все свойства, характерные для алкенов – вступает в реакции присоединения, окисления, полимеризации.

    Стирол присоединяет водород, кислород, галогены, галогеноводороды и воду в соответствии с правилом Марковникова.

    Например, при гидратации стирола образуется спирт:

    Стирол присоединяет бром при обычных условиях, то есть обесцвечивает бромную воду

    При полимеризации стирола образуется полистирол:

    Как и алкены, стирол окисляется водным раствором перманганата калия при обычных условиях. Обесцвечивание водного раствора перманганата калия — качественная реакция на стирол:

    При жестком окислении стирола перманганатом калия в кислой среде (серная кислота) разрывается двойная связь и образуется бензойная кислота и углекислый газ:

    При окислении стирола перманганатом калия в нейтральной среде при нагревании также разрывается двойная связь и образуется соль бензойной кислоты и карбонат:


    источники:

    http://info-farm.ru/alphabet_index/b/benzojjnaya-kislota.html

    http://chemege.ru/ximicheskie-svojstva-areny/