Уравнение реакций галогенопроизводных углеводородов с алканами

Химические свойства алканов

Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.

Алканы – предельные углеводороды, поэтому они не могут вступать в реакции присоединения.

Для предельных углеводородов характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для алканов характерны только радикальные реакции.

Алканы устойчивы к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагируют с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения.

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование.

Алканы реагируют с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

При хлорировании алканов с углеродным скелетом, содержащим более 3 атомов углерода, образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании 2-метилпропана преимущественно образуется 2-бром-2-метилпропан:

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

1.2. Нитрование алканов.

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает также избирательно.

С третичный–Н > С вторичный–Н > С первичный–Н

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

2. Реакции разложения.

2.1. Дегидрирование и дегидроциклизация.

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Уравнение дегидрирования алканов в общем виде:

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании этана образуются этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Алканы с более длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

2.2. Пиролиз (дегидрирование) метана .

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:

Пиролиз метана – промышленный способ получения ацетилена.

2.3. Крекинг.

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Реакции окисления алканов.

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение.

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Например, горение пропана в недостатке кислорода:

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление.

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Продукт реакции – так называемый «синтез-газ».

4. Изомеризация алканов.

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

№9. Согласно схеме 3 приведите уравнения соответствующих химических реакций.

При взаимодействии предельных углеводородов с галогенами образуются галогенопроизводные углеводородов:

Галогенопроизводные углеводородов реагируют с натрием, при этом образуются предельные углеводороды, содержащие в молекуле вдвое больше атомов углерода, чем исходное галогенопроизводное (реакция Вюрца):

При отщеплении водорода от предельных углеводородов могут образоваться углеводороды ряда этилена — алкены или углеводороды ряда ацетилена — алкины (реакция дегидрирования):

Алкины можно также получить при дегидрировании алкенов:

При присоединении водорода к алкенам образуются предельные углеводороды (реакция гидрирования):

При гидрировании алкинов в зависимости от условий могут образоваться как алкены, так и алканы:

Под действием спиртового раствора щелочи от галогенопроизводных отщепляется галогеноводород, при этом образуются непредельные углеводороды:

При присоединении галогеноводородов к непредельным углеводородам образуются галогенопроизводные, присоединение протекает по правилу Марковникова:

При тримеризации ацетилена образуется бензол — это пример получения ароматического углеводорода из алкина.

В результате присоединения к ацетилену воды образуется уксусный альдегид (реакция Кучерова).

При реакции ацетилена с избытком хлора образуется тетрахлорэтан.

При действии спиртового раствора щелочи на 1,2 дихлорэтан отщепляются две молекулы хлорводорода и образуется ацетилен.

Это единственный пример превращения алкинов в альдегиды! При присоединении воды к гомологам ацетилена образуются не альдегиды, а кетоны:

При окислении уксусного альдегида образуется уксусная кислота:

Уксусный альдегид можно также восстановить до этилового спирта:

Можно и наоборот, окислить этиловый спирт в уксусный альдегид:

Решебник по химии за 10 класс (Г.Е.Рудзитис, Ф.Г.Фельдман, 2000 год),
задача №9
к главе «Глава IV. Непредельные углеводороды (алкены, алкадиены и алкины) § 4. Ацетилен и его гомологи (стр. 49) Вопросы».

Галогенирование алканов на примере пропана

Галогенирование – процесс присоединения к молекуле органического соединения атома галогена – это одно из химических взаимодействий, в которых участвуют углеводороды ряда алканов. Благодаря общности структуры молекул у всех членов гомологического ряда реакции с галогеном обладают единым характером. При этом галогенирование пропана и следующих за ним в гомологическом ряду соединений имеет особенности, связанные с наличием в молекулах вторичных, третичных и четвертичных атомов углерода.

Краткая характеристика алканов

К простейшим органическим соединениям относятся ациклические насыщенные, или предельные углеводороды (алканы). Их отличают следующие структурные особенности:

  • неразветвленные (прямые) или разветвленные молекулы, не содержащие циклических образований;
  • все химические связи в молекуле – одинарные.

Общая формула имеет вид . Углеродная цепь в молекулах алканов характеризуется полным насыщением водородными атомами, вследствие чего эти соединения проявляют слабую химическую активность. Они вступают в реакции замещения, окисления, разложения и изомеризации.

Механизм замещения у алканов носит радикальный характер, так как разрыв слабополярной связи C-H протекает с образованием пары свободных радикалов – нейтральных частиц, имеющих по одному неспаренному электрону. Атом водорода может замещаться галогеном, нитрогруппой или сульфогруппой.

Галогенирование алканов

Реакция свободно-радикального замещения (обозначается символом SR – от англ. substitution radical reaction) водородного атома в молекуле алкана атомом галогена называется галогенированием. Ее инициирование требует воздействия ультрафиолетового облучения или повышенной температуры. Реакция носит цепной характер, так как в каждом ее акте образуются свободные радикалы, генерирующие следующий акт.

Замещение фтором – фторирование – чрезвычайно экзотермический процесс, сопровождающийся взрывом и разрушением молекулы алкана. Реакция с участием йода, наоборот, является эндотермической и обратимой – в ходе ее происходит восстановление продукта реакции йодоводородом, поэтому прямое йодирование неэффективно. Практический интерес представляют реакции алканов с хлором и бромом.

Стадии галогенирования

Удобнее всего рассмотреть, какой механизм имеет реакция хлорирования алканов, на примере метана. При облучении или нагреве реакционной смеси реакция инициируется, и далее цепная реакция протекает в несколько стадий.

  1. Зарождение цепи – распад молекулы хлора на активные радикалы:
  2. Развитие цепи. Взаимодействуя с молекулой метана , радикал отщепляет от нее атом водорода с образованием метил-радикала , который, в свою очередь, расщепляет другую молекулу хлора. Эти элементарные акты повторяются многократно, образуя новые радикалы и развивая цепную реакцию:
  3. Обрыв цепи. Цепной процесс прекращается, когда радикалы реагируют между собой:

В общем виде уравнение галогенирования метана хлором записывается в форме:

Процесс замещения не ограничивается образованием хлорметана, на молекулы которого также воздействуют радикалы . Реакция приводит к образованию смеси всех возможных продуктов хлорирования метана:

Выход продуктов зависит от мольного соотношения реагентов и условий реакции. Так, при эквимолярном количестве метана и хлора и температуре 440° C соотношение молярных долей продуктов в процентах составляет около 39:41:19:1.

Реакция бромирования отличается меньшим выделением энергии и протекает медленнее, так как его реакционная способность ниже, чем у хлора.

Региоселективность

Начиная с пропана , в составе молекул алканов появляются вторичные атомы углерода, а с бутана, имеющего два изомера (н-бутан и изобутан ), – третичные, связанные соответственно с двумя и тремя другими углеродными атомами. Скорость галогенирования у разных атомов различна и возрастает в ряду «первичный → вторичный → третичный». Это явление носит название регионаправленности галогенирования, или региоселективности. Четвертичные атомы не участвуют в реакции радикального замещения.

Селективность зависит от следующих факторов:

  • Активность реагента. Чем активнее галоген, тем слабее проявляется избирательность при замещении водорода. Так, при взаимодействии алкана с хлором региоселективность значительно меньше, чем в реакциях с бромом, или не наблюдается.
  • Температура. Нагревание ведет к снижению селективности.

Хлорирование и бромирование пропана

В реакции пропана с хлором при низкой температуре селективная направленность выражена слабо. Несмотря на то, что образующиеся в ходе реакции радикалы менее энергичны и, следовательно, более устойчивы, свободные атомы хлора чрезвычайно активны и воздействуют как на вторичные, так и на первичные атомы, особенно при высокой температуре.

При нагревании радикалы хлора атакуют первичные атомы даже более активно, так как на разрыв их связи с водородом затрачивается меньше энергии.

При бромировании пропана региоселективность вследствие меньшей активности брома достигает высоких значений:

Бромирование протекает аналогично реакции с участием простейших алканов с преимущественным замещением водорода у вторичных атомов:

Продуктом этой реакции является 2-бромпропан.

Галогенирование бутана

В реакциях бутана с хлором селективность не играет заметной роли. Даже при низкой температуре соотношение продуктов хлорирования может быть различным:

Бромирование бутана демонстрирует большую селективность:

Реакция отщепления

Активные двухвалентные металлы (как правило, магний или цинк) отщепляют от молекул дигалогеналканов атомы хлора или брома, если они замещают водород у двух соседних атомов углерода. Между последними образуется двойная связь. Продуктом такой реакции является алкен.

Пример реакции дегалогенирования алканов – отщепление цинком атомов хлора от 1,2-дихлорпропана с образованием пропилена (пропена) и хлорида цинка:

Применение галогеналканов

Хлорированные и бромированные алканы применяются в качестве промежуточных соединений в различных отраслях, таких как синтез высокомолекулярных соединений, производство лаков, красок и растворителей. Хлоралканы служат сырьем для фторалканов, которые нельзя получить прямым фторированием.

Токсичность галогеналканов тем меньше, чем активнее входящий в их состав галоген. Поэтому фторалканы наиболее безопасны. Фторсодержащие фреоны широко используются в качестве вспенивателей, хладагентов и пропеллентов.


источники:

http://5terka.com/node/4527

http://allinchemistry.ru/organicheskaya-himiya/galogenirovanie-alkanov-na-primere-propana