Уравнение регрессии после применения омнк

Please wait.

We are checking your browser. medium.com

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 6e029f964a4b3a71 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Лекция по эконометрике. Лекция по эконометрике

НазваниеЛекция по эконометрике
Дата21.06.2018
Размер1.32 Mb.
Формат файла
Имя файлаЛекция по эконометрике.docx
ТипЛекция
#47509
страница2 из 5
С этим файлом связано 6 файл(ов). Среди них: ЭКОНО Задача.docx, СТАТ в жив. Лекция №9.docx, Вопросы по АВтоматике.docx, ЛЕКЦИЯ СОЦ.СТАТ..doc, доступность к прдовольствию.pdf, Лекция по эконометрике.docx.
Показать все связанные файлы Подборка по базе: 1. Лекция Особенности макетирования и верстки длинных документов, Медицинская статистика Лекция проф.Виноградова К.А.(1).pptx, 6 лекция Отбасы.ppt, 9-10 Лекция дуниетану.ppt, такт 5 лекция.doc, Тест к лекциям.doc, 3 лекция. куиз.docx, 3 лекция.pptx, антибиотики лекция.docx, ТПЭФМ_Практическое занятие 1_между лекциями 11 и 12.doc

2.1 Оценка общего качества уравнения регрессии
Для анализа общего качества полученного уравнения регрессии на количественном уровне используют коэффициент детерминации . Он рассчитывается по формуле:

.
В числителе вычитаемой из единицы дроби стоит сумма квадратов отклонений (СКО) выборочных значений зависимой переменной от теоретических, найденных с помощью уравнения регрессии . В знаменателе – СКО наблюдений зависимой переменной от среднего значения.

Коэффициент детерминации характеризует долю вариации (разброса) зависимой переменной, объяснённой с помощью данного уравнения.

Замечание. В случае парной линейной регрессии коэффициент детерминации равен квадрату коэффициента линейной корреляции.

Более точным является значение коэффициента детерминации с поправкой на число степеней свободы.

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы:

дисперсия, характеризующая общий разброс;

остаточная дисперсия, где m – число независимых (объясняющих) переменных, в случае парной регрессии m =1 и формула имеет вид: .

Учитывая приведённые выше обозначения, формула коэффициента детерминации с поправкой на число степеней свободы будет иметь вид:
.
Значения коэффициента изменяются от 0 до +1 (в редких случаях значение может быть и отрицательным числом).

Близость коэффициента детерминации к +1 свидетельствует о том, что существует статистически значимая линейная связь между переменными, а уравнение имеет хорошее качество.

Близость к 0 говорит о том, что просто горизонтальная прямая является лучшей по сравнению с найденной регрессионной прямой.

Самостоятельную важность коэффициент детерминации приобретает только в случае множественной регрессии.
2.2 Оценка существенности параметров линейной регрессии и всего уравнения в целом
После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

Проверка значимости производится на основе дисперсионного анализа.

Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части – объясненную и необъясненную:

или, соответственно:


Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид .

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы (df-degrees of freedom) – это число независимо варьируемых значений признака.

Для общей СКО требуется (n-1) независимых отклонений,

Факторная СКО имеет одну степень свободы, и

Таким образом, можем записать:

Из этого баланса определяем, что = n–2.

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: — общая дисперсия, — факторная, — остаточная.

Анализ статистической значимости коэффициентов линейной регрессии

Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик.

Дисперсии коэффициентов рассчитываются по формулам:

Дисперсия коэффициента регрессии :
,
где – остаточная дисперсия на одну степень свободы.

Дисперсия параметра :

Отсюда стандартная ошибка коэффициента регрессии определяется по формуле:
,
Стандартная ошибка параметра определяется по формуле:
.
Далее рассчитываются t – статистики:
,
Они служат для проверки нулевых гипотез о том, что истинное значение коэффициента регрессии b или свободного члена a равно нулю: .

Альтернативная гипотеза имеет вид: .

t – статистики имеют t – распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости α и степенях свободы находят критическое значение .

Если , то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми.

Если , то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид , и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде ).

Интервальные оценки коэффициентов линейного уравнения регрессии:

Доверительный интервал для а: .

Доверительный интервал для b:

Это означает, что с заданной надёжностью (где — уровень значимости) истинные значения а, b находятся в указанных интервалах.

Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль.

Анализ статистической значимости уравнения в целом.

Распределение Фишера в регрессионном анализе

Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y ( или ).

Величина F – критерия связана с коэффициентом детерминации. В случае множественной регрессии:
,
где m – число независимых переменных.

В случае парной регрессии формула F – статистики принимает вид:
.
При нахождении табличного значения F- критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы: – в случае множественной регрессии, – для парной регрессии.

Если , то отклоняется и делается вывод о существенности статистической связи между y и x.

Если , то вероятность уравнение регрессии считается статистически незначимым, не отклоняется.

Замечание. В парной линейной регрессии . Кроме того, , поэтому . Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.

Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен , затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение , для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть , пусть небольшую, вариации зависимой переменной).

Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина
,
имеющая распределение Фишера с степенями свободы.

По таблицам распределения Фишера, при заданном уровне значимости, находят . И если , то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно.

Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных.

В этом случае рассчитывается F – статистика
,
имеющая распределение . И если она превышает критический уровень, то включение новых переменных объясняет существенную часть необъяснённой ранее дисперсии зависимой переменной (т.е. включение новых объясняющих переменных оправдано).

Замечания. 1. Включать новые переменные целесообразно по одной.

2. Для расчёта F – статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы.

F – статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений.

Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида . Пусть СКО от линии регрессии (т.е. ) равны для них, соответственно, .

Проверяется нулевая гипотеза : о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же.

Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО .

Тогда рассчитывается F – статистика по формуле:

Она имеет распределение Фишера с степенями свободы. F – статистика будет близкой к нулю, если уравнение для обеих выборок одинаково, т.к. в этом случае . Т.е. если , то нулевая гипотеза принимается.

Если же , то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя.
2.3 Проверка предпосылок, лежащих в основе МНК
Следующим этапом оценивания качества уравнения является проверка выполнения предпосылок, лежащих в основе метода расчёта параметров МНК.

Предпосылками МНК являются:

1. случайный характер ошибок регрессии;

2. нулевая средняя величина ошибок регрессии, не зависящая от значения объясняющих переменных;

3. независимость распределения ошибок для различных наблюдений; в случае оценки уравнения на временных рядах – отсутствие автокорреляции ошибок;

4. постоянство дисперсии ошибок, её независимость от значений объясняющих переменных – гомоскедастичность (если эта предпосылка не выполняется, то имеет место гетероскедастичность ошибок);

5. нормальность распределения ошибок регрессии.

Для проверки выполнения каждой из предпосылок применения МНК имеются специальные тесты. Реализация многих из этих тестов предполагает значительный объём исходных данных.

Если распределение случайных ошибок не соответствует некоторым предпосылкам МНК, то следует корректировать модель.

Проверка первой предпосылки МНК

Прежде всего, проверяется случайный характер остатков – первая предпосылка МНК. С этой целью стоится график зависимости остатков от теоретических значений результативного признака (рис. 1). Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, теоретические значения хорошо аппроксимируют фактические значения .

Рис. 1. Зависимость случайных остатков от теоретических значений .
Возможны следующие случаи, если зависит от то:

Рис. 2. Зависимость случайных остатков от теоретических значений .
В этих случаях необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.

Проверка второй предпосылки МНК

Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что (или ). Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных.

Вместе с тем, несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин , что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью наряду с изложенным графиком зависимости остатков от теоретических значений результативного признака строится график зависимости случайных остатков от факторов, включенных в регрессию (рис. 3).

Рис. .3. Зависимость величины остатков от величины фактора .
Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений . Если же график показывает наличие зависимости и , то модель неадекватна. Причины неадекватности могут быть разные. Возможно, что нарушена третья предпосылка МНК и дисперсия остатков не постоянна для каждого значения фактора . Может быть неправильна спецификация модели и в нее необходимо ввести дополнительные члены от , например . Скопление точек в определенных участках значений фактора говорит о наличии систематической погрешности модели.

Замечание. Предпосылка о нормальном распределении остатков (пятая предпосылка) позволяет проводить проверку параметров регрессии и корреляции с помощью — и -критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, т.е. при нарушении пятой предпосылки МНК.

Совершенно необходимым для получения по МНК состоятельных оценок параметров регрессии является соблюдение третьей и четвертой предпосылок.

Автокорреляция ошибок. Статистика Дарбина-Уотсона

Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е. и, в частности, между соседними отклонениями .

Автокорреляция (последовательная корреляция) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных.

Возможны следующие случаи:

Эти случаи могут свидетельствовать о возможности улучшить уравнение путём оценивания новой нелинейной формулы или включения новой объясняющей переменной.

В экономических задачах значительно чаще встречается положительная автокорреляция, чем отрицательная автокорреляция.

Если же характер отклонений случаен, то можно предположить, что в половине случаев знаки соседних отклонений совпадают, а в половине – различны.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

  1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
  2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .

От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.

Для обнаружения автокорреляции используют либо графический метод. Либо статистические тесты.

Графический метод заключается в построении графика зависимости ошибок от времени (в случае временных рядов) или от объясняющих переменных и визуальном определении наличия или отсутствия автокорреляции. Наиболее известный критерий обнаружения автокорреляции первого порядка – критерий Дарбина-Уотсона. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели. Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . А затем рассчитывается статистика Дарбина-Уотсона по формуле:
.
Статистика DW изменяется от 0 до 4. DW=0 соответствует положительной автокорреляции, при отрицательной автокорреляции DW=4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW = 2. Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона (- нижняя граница признания положительной автокорреляции) и (-верхняя граница признания отсутствия положительной автокорреляции) для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

– положительная автокорреляция, принимается ;

– зона неопределенности;

– автокорреляция отсутствует;

– зона неопределенности;

– отрицательная автокорреляция, принимается .


Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .

Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:

Связь выражается формулой:
.
Значения r изменяются от –1 (в случае отрицательной автокорреляции) до +1 (в случае положительной автокорреляции). Близость r к нулю свидетельствует об отсутствии автокорреляции.

При отсутствии таблиц критических значений DW можно использовать следующее «грубое» правило: при достаточном числе наблюдений (12-15), при 1-3 объясняющих переменных, если , то отклонения от линии регрессии можно считать взаимно независимыми.

Либо применить к данным уменьшающее автокорреляцию преобразование (например автокорреляционное преобразование или метод скользящих средних).

Существует несколько ограничений на применение критерия Дарбина-Уотсона.

  1. Критерий DW применяется лишь для тех моделей, которые содержат свободный член.
  2. Предполагается, что случайные отклонения определяются по итерационной схеме

,
называемой авторегрессионной схемой первого порядка AR(1). Здесь – случайный член.

  1. Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).
  2. Критерий Дарбина – Уотсона не применим к авторегрессионным моделям, которые содержат в числе факторов также зависимую переменную с временным лагом (запаздыванием) в один период.

Для авторегрессионных моделей предлагается h – статистика Дарбина
,
где – оценка коэффициента автокорреляции первого порядка, D(c) – выборочная дисперсия коэффициента при лаговой переменной yt-1, n – число наблюдений.

Обычно значение рассчитывается по формуле , а D(c) равна квадрату стандартной ошибки Sc оценки коэффициента с.

Методы устранения автокорреляции. Авторегрессионное преобразование

В случае наличия автокорреляции остатков полученная формула регрессии обычно считается неудовлетворительной. Автокорреляция ошибок первого порядка говорит о неверной спецификации модели. Поэтому следует попытаться скорректировать саму модель. Посмотрев на график ошибок, можно поискать другую (нелинейную) формулу зависимости, включить неучтённые до этого факторы, уточнить период проведения расчётов или разбить его на части.

Если все эти способы не помогают и автокорреляция вызвана какими–то внутренними свойствами ряда i>, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR(1). (Авторегрессией это преобазование называется потому, что значение ошибки определяется значением той же самой величины, но с запаздыванием. Т.к. максимальное запаздывание равно 1, то это авторегрессия первого порядка).

Формула AR(1) имеет вид:
.
Где -коэффициент автокорреляции первого порядка ошибок регрессии.

Рассмотрим AR(1) на примере парной регрессии:
.
Тогда соседним наблюдениям соответствует формула:
(1),

(2).
Умножим (2) на и вычтем из (1):
.

Сделаем замены переменных

получим с учетом
:

(6).
Это преобразование называется авторегрессионным (преобразованием Бокса-Дженкинса).

Поскольку случайные отклонения удовлетворяют предпосылкам МНК, оценки а * и b будут обладать свойствами наилучших линейных несмещенных оценок. По преобразованным значениям всех переменных с помощью обычного МНК вычисляются оценки параметров а* и b, которые затем можно использовать в регрессии.

Т.о. если остатки по исходному уравнению регрессии автокоррелированы, то для оценки параметров уравнения используют следующие преобразования:

1) Преобразовать исходные переменные у и х к виду (3), (4).

2) Обычным МНК для уравнения (6) определить оценки а * и b.

3) Рассчитать параметр а исходного уравнения из соотношения (4).

4) Записать исходное уравнение (1) с параметрами а и b (где а — из п.3, а b берётся непосредственно из уравнения (6)).

Авторегрессионное преобразование может быть обобщено на произвольное число объясняющих переменных, т.е. использовано для уравнения множественной регрессии.

Для преобразования AR(1) важно оценить коэффициент автокорреляции ρ. Это делается несколькими способами. Самое простое – оценить ρ на основе статистики DW:
,
где r берется в качестве оценки ρ. Этот метод хорошо работает при большом числе наблюдений.

В случае, когда есть основания считать, что положительная автокорреляция отклонений очень велика (), можно использовать метод первых разностей (метод исключения тенденции), уравнение принимает вид

.
Из уравнения по МНК оценивается коэффициент b. Параметр а здесь не определяется непосредственно, однако из МНК известно, что .

В случае полной отрицательной автокорреляции отклонений ()
,
получаем уравнение регрессии:

или .

Вычисляются средние за 2 периода, а затем по ним рассчитывают а и b. Данная модель называется моделью регрессии по скользящим средним.

Проверка гомоскедастичности дисперсии ошибок

В соответствии с четвёртой предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию . Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность.

В качестве примера реальной гетероскедастичности можно привести то, что люди с большим доходом не только тратят в среднем больше, чем люди с меньшим доходом, но и разброс в их потреблении также больше, поскольку они имеют больше простора для распределения дохода.

Наличие гетероскедастичности можно наглядно видеть из поля корреляции (- графический метод обнаружения гетероскедастичности).

Наличие гомоскедастичности или гетероскедастичности можно видеть и по рассмотренному выше графику зависимости остатков от теоретических значений результативного признака .


Для множественной регрессии данный вид графиков является наиболее приемлемым визуальным способом изучения гомо- и гетероскедастичности.

При нарушении гомоскедастичности имеем неравенства: , где — постоянная дисперсия ошибки при соблюдении предпосылки. Т.е. можно записать, что дисперсия ошибки при наблюдении пропорциональна постоянной дисперсии: .

— коэффициент пропорциональности. Он меняется при переходе от одного значения фактора к другому.

Задача состоит в том, чтобы определить величину и внести поправку в исходные переменные. При этом используют обобщённый МНК, который эквивалентен обычному МНК, применённому к преобразованным данным.

Чтобы убедиться в обоснованности использования обобщённого МНК проводят эмпирическое подтверждение наличия гетероскедастичности.

При малом объёме выборки, что наиболее характерно для эмпирических исследований, для оценки гетероскедастичности может использоваться метод Гольдфельда-Квандта (в 1965 г. они рассмотрели модель парной линейной регрессии, в которой дисперсия ошибок пропорциональна квадрату фактора). Пусть рассматривается модель, в которой дисперсия пропорциональна квадрату фактора: , . А также остатки имеют нормальное распределение и отсутствует автокорреляция остатков.

Параметрический тест (критерий) Гольдфельда – Квандта:

1. Все n наблюдений в выборке упорядочиваются по величине x.

2. Вся упорядоченная выборка разбивается на три подвыборки (объёмом k, С, k.)
.
Исключаются из рассмотрения С центральных наблюдений. (По рекомендациям специалистов, объём исключаемых данных С должен быть примерно равен четверти общего объёма выборки n, в частности, при n =20, С=4; при n =30, С = 8; при n =60, С=16).

3. Оцениваются отдельные регрессии для первой подвыборки (k первых наблюдений) и для последней подвыборки (k последних наблюдений).

4. Определяются остаточные суммы квадратов для первой и второй групп. Если предположение о пропорциональности дисперсий отклонений значениям x верно, то .

5. Выдвигается нулевая гипотеза которая предполагает отсутствие гетероскедастичности.

Для проверки этой гипотезы рассчитывается отношение
,
которое имеет распределение Фишера с степеней свободы (здесь m – число объясняющих переменных).

Если , то гипотеза об отсутствии гетероскедастичности отклоняется при уровне значимости α.

Этот же тест может быть использован и при предположении об обратной пропорциональности между дисперсией и значениями объясняющей переменной . В этом случае статистика Фишера принимает вид:
.
При установлении гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Вид преобразования зависит от того, известны или нет дисперсии отклонений . Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов заменять обобщенным методом наименьших квадратов (ОМНК).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности. Рассмотрим ОМНК для корректировки гетероскедастичности. Будем предполагать, что среднее значение остаточных величин равно нулю , а дисперсия пропорциональна величине .

,
где – дисперсия ошибки при конкретном -м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения модель примет вид:
.
В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе -го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии по мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:
,
а исходные данные для данного уравнения будут иметь вид:
,.
По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные и взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида
.
Соответственно получим следующую систему нормальных уравнений:

,
Т.е. коэффициент регрессии при использовании обобщенного МНК с целью корректировки гетероскедастичности представляет собой взвешенную величину по отношению к обычному МНК с весом .

Если преобразованные переменные и взять в отклонениях от средних уровней, то коэффициент регрессии можно определить как
.
При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии определяется по формуле:.

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии.

Для применения ОМНК необходимо знать фактические значения дисперсий отклонений . На практике такие значения известны крайне редко. Поэтому, чтобы применить ВНК, необходимо сделать реалистические предположения о значениях . В эконометрических исследованиях чаще всего предполагается, что дисперсии отклонений пропорциональны или значениям xi, или значениям , т.е или .

Если предположить, что дисперсии пропорциональны значениям фактора x, т.е. , тогда уравнение парной регрессии преобразуется делением его левой и правой частей на :

.
Здесь для случайных отклонений выполняется условие гомоскедастичности. Следовательно, для регрессии применим обычный МНК. Следует отметить, что новая регрессия не имеет свободного члена, но зависит от двух факторов. Оценив для неё по МНК коэффициенты а и b, возвращаемся к исходному уравнению регрессии.

Если предположить, что дисперсии , то соответствующим преобразованием будет деление уравнения парной регрессии на xi:

или, если переобозначить остатки как :
.
Здесь для отклонений vi также выполняется условие гомоскедастичности.

В полученной регрессии по сравнению с исходным уравнением параметры поменялись ролями: свободный член а стал коэффициентом, а коэффициент b – свободным членом. Применяя обычный МНК в преобразованных переменных

,
получим оценки параметров, после чего возвращаемся к исходному уравнению.

Пример. Рассматривая зависимость сбережений от дохода , по первоначальным данным было получено уравнение регрессии
.
Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:
.
Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра зависимости сбережений от дохода.

В случае множественной регрессии ,

Если предположить (т.е. дисперсия ошибок пропорциональна квадрату первой объясняющей переменной), то в этом случае обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:
.

Следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результативного признака затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид
,
где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида
.
В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

В заключение следует отметить, что обнаружении гетероскедастичности и её корректировка являются весьма серьёзной и трудоёмкой проблемой. В случае применения обобщённого (взвешенного) МНК необходима определённая информация или обоснованные предположения о величинах .

Прогнозирование. Регрессионный анализ, его реализация и прогнозирование

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Сущность метода регрессионного анализа

Одним из методов, используемых для прогнозирования, является регрессионный анализ.

Регрессия – это статистический метод, который позволяет найти уравнение, наилучшим образом описывающее совокупность данных, заданных таблицей.

XX1X2XiXn
YY1Y2YiYn

На графике данные отображаются точками. Регрессия позволяет подобрать к этим точкам кривую у=f(x), которая вычисляется по методу наименьших квадратов и даёт максимальное приближение к табличным данным.

По полученному уравнению можно вычислить (сделать прогноз) значение функции у для любого значения х , как внутри интервала изменения х из таблицы(интерполяция), так и вне его (экстраполяция).

Линейная регрессия

Линейная регрессия дает возможность наилучшим образом провести прямую линию через точки одномерного массива данных (рис.13.1 а). Уравнение с одной независимой переменной, описывающее прямую линию, имеет вид:

где:x – независимая переменная;

y – зависимая переменная;

m – характеристика наклона прямой;

b – точка пересечения прямой с осью у.

Например, имея данные о реализации товаров за год с помощью линейной регрессии можно получить коэффициенты прямой (1) и, предполагая дальнейший линейный рост, получить прогноз реализации на следующий год.

Нелинейная регрессия

Нелинейная регрессия позволяет подбирать к табличным данным нелинейное уравнение (рис. 13.1 рис. 13.1, б.) – параболу, гиперболу и др. Excel реализует нелинейность в виде экспоненты, т.е. подбирает кривую вида:

,

которая позволяет наилучшим образом провести экспоненциальную кривую по точкам данных, которые изменяются нелинейно.

Так, например, данные о росте населения почти всегда лучше описываются не прямой линией, а экспоненциальной кривой. При этом нужно помнить, что достоверное прогнозирование возможно только на участках подъёма или спуска кривой (при отрицательных значениях х), т.к. сама кривая (2) изменяется монотонно, без точек перегиба. Например, делать экспоненциальный прогноз для функции, изменяющейся синусоидально, можно только на участках подъёма или спуска функции, для чего её разбивают на соответствующие интервалы.

Множественная регрессия

Множественная регрессия представляет собой анализ более одного набора данных аргумента х и даёт более реалистичные результаты.

Множественный регрессионный анализ также может быть как линейным, так и экспоненциальным. Уравнение регрессии (1) и (2) примут соответственно вид (3) и (4):

( 3)
( 4)

С помощью множественной регрессии, например, можно оценить стоимость дома в некотором районе, основываясь на данных его площади, размерах участка земли, этажности, вида из окон и т.д.

Использование функций регрессии

В Excel имеется 5 функций для линейной регрессии: ЛИНЕЙН(…)(LINEST), ТЕНДЕНЦИЯ(…), ПРЕДСКАЗ(…), НАКЛОН(…), СТОШУХ(…)) и 2 функции для экспоненциальной регрессии – ЛГРФПРИБЛ(…) и РОСТ(…).

Рассмотрим некоторые из них.

Функция ЛИНЕЙН((LINEST) вычисляет коэффициент m и постоянную b для уравнения прямой (1). Синтаксис функции:

Известные_значения_у и известные_значения_х – это множество значений у и необязательное множество значений х (их вводить необязательно), которые уже известны для соотношения (1).

Константа – это логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0. Если константа имеет значение ИСТИНА или опущено, то b вычисляется обычным образом.

Статистика – это логическое значение, которое указывает требуется ли вывести дополнительную статистику по регрессии.

Если статистика имеет значение ЛОЖЬ (или 0), то функция ЛИНЕЙН возвращает только значения коэффициентов m и b , в противном случае выводится дополнительная регрессионная статистика в виде табл. 13.1 таблица 13.1:

Таблица 13.1. Общий вид выводимого массива статистических показателей при использовании функции ЛИНЕЙН((LINEST)
mnmn-1m2m1b
sensen-1se2se1seb
r 2sey#Н/Д#Н/Д#Н/Д
Fdf#Н/Д#Н/Д#Н/Д
ssregssresid#Н/Д#Н/Д#Н/Д

где: se1 , se2,…,sen – стандартные значения ошибок для коэффициентов m1 , m2,…, mn ;

seb – стандартное значение ошибки для постоянной b (seb равно #Н/Д, т.е. «нет допустимого значения», если конст. имеет значение ЛОЖЬ);

r 2 – коэффициент детерминированности. Сравниваются фактические значения у и значения, получаемые из уравнения прямой; по результатам сравнения вычисляется коэффициент детерминированности, нормированный от 0 до 1. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями у. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений у;

sey – стандартная ошибка для оценки у (предельное отклонение для у);

F – F-cтатистика, или F-наблюдаемое значение. Она используется для определения того, является ли наблюдаемая взаимосвязь между зависимой и независимой переменными случайной или нет;

df – степени свободы. Степени свободы полезны для нахождения F-критических значений в статистической таблице. Для определения уровня надёжности модели нужно сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН;

ssreg – регрессионная сумма квадратов;

ssresid – остаточная сумма квадратов;

#Н/Д – ошибка, означающая «нет доступного значения».

Любую прямую можно задать её наклоном m и у-пересечением:

Наклон ( m ). Для того, чтобы определить наклон прямой, обычно обозначаемый через m , нужно взять 2 точки прямой (х1,у1) и (х2,у2); тогда наклон равен m=(y2-y1)/(x2-x1 ).

у-пересечение ( b ) прямой, обычно обозначаемое через b , является значение у для точки, в которой прямая пересекает ось у.

Уравнение прямой имеет вид: у=mx+b. Если известны значения m и b , то можно вычислить любую точку на прямой, подставляя значения у или х в уравнение. Можно также использовать функцию ТЕНДЕНЦИЯ ( TREND ) (см. ниже).

Если для функции у имеется только одна независимая переменная х, можно получить наклон и у-пересечение непосредственно, используя следующие формулы:

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точными являются модель, используемая функцией ЛИНЕЙН, и значения, получаемые из уравнения прямой.

В случае экспоненциальной регрессии аналогом функции (5) является функция ЛГРФПРИБЛ(LOGEST):

которая отличается лишь тем, что вычисляет коэффициенты m и b для экспоненциальной кривой (2).

Функция ТЕНДЕНЦИЯ(TREND) имеет вид:

возвращает числовые значения, лежащие на прямой линии, наилучшим образом аппроксимирующие известные табличные данные.

Новые_значения_х – это те, для которых необходимо вычислить соответствующие значения у.

Если параметр новые_значения_х пропущен, то считается, что он совпадает с известными х. Назначение остальных параметров функции ТЕНДЕНЦИЯ совпадает с описанными выше.

В случае экспоненциальной регрессии аналогом функции (7) является функция РОСТ(GROWTH):

возвращает стандартную погрешность регрессии – меру погрешности предсказываемого значения у для заданного значения х.

Правила ввода функций

Формулы(5)-(8) являются табличными, т.е. они заменяют собой несколько обычных формул и возвращают не один результат, а массив результатов. Поэтому необходимо соблюдать следующие правила:

  1. Перед вводом одной из формул (5)-(8) выведите блок ячеек, точно совпадающей по размеру с величиной возвращаемого формулой массива результатов. Например, при использовании функции ЛИНЕЙН с выводом статистики нужно выделить массив ячеек, равный табл. 13.1, если параметр статистики равен ЛОЖЬ, достаточно выделить одну строку табл. 13.1.
  2. Наберите функцию в строке формул. При этом слова на русском языке можно набирать строчными буквами, т.к. они являются ключевыми и при вводе Exсel автоматически переведет их в заглавные. Имена ячеек автоматически вводятся латинским шрифтом. Вместо слова ИСТИНА можно вводить числа от 1 до 9 (не 0), а вместо слова ЛОЖЬ – число 0. Если в результате, выполнения функции выводится одно число, можно вводить формулы не вручную, а использовать аппарат Мастера функций.
  3. Одновременно нажмите клавиши Shift+Ctrl+Enter . Результаты вычислений заполнят выделенные ячейки.

Линия тренда

Excel позволяет наглядно отображать тенденцию данных с помощью линии тренда, которая представляет собой интерполяционную кривую, описывающую отложенные на диаграмме данные.

Для того, чтобы дополнить диаграмму исходных данных линией тренда, необходимо выполнить следующие действия:

  • выделить на диаграмме ряд данных, для которого требуется построить линию тренда;
  • щелкнуть правой кнопкой мыши и выбрать команду Добавить линию тренда;
  • в открывшемся окне задать метод интерполяции (линейный, полиномиальный, логарифмический и т. д.), а также через команду Параметры – другие параметры (например, вывод уравнения кривой тренда, коэффициента детерминированности r 2 , направление и количество периодов для экстраполяции (прогноза) и др.);
  • нажать кнопку Закрыть.

Чтобы отобразить на графике (гистограмме и др.) новые, прогнозируемые в результате регрессионного анализа данные, нужно:

  • определить их с помощью функции ТЕНДЕНЦИЯ, РОСТ или другим способом,
  • выделить на диаграмме нужную кривую, щелкнув по ней правой кнопкой мыши,
  • в появившемся окне выбрать команду Выбрать данные…, в появившемся окне выбрать диапазон ячеек с новыми данными вручную или протащив по ним курсор при нажатой левой клавише мыши, нажать ОК.

На диаграмме появится продолжение кривой, построенной по новым данным.

Простая линейная регрессия

Пример 1. Функция ТЕНДЕНЦИЯ(TREND)

а) Предположим, что фирма может приобрести земельный участок в июле. Фирма собирает информацию о ценах за последние 12 месяцев, начиная с марта, на типичный земельный участок. Название первого столбца «Месяц» с данными о номерах месяцев записано в ячейке А1, а второго столбца «Цена» – в ячейке В1. Номера месяцев с 1 по 12 (известные значения х) записаны в ячейки А2…А13. Известные значения у содержат множество известных значений (133 890 руб., 135 000 руб., 135 790 руб., 137 300 руб., 138 130 руб., 139 100 руб., 139 900 руб., 141 120 руб., 141 890 руб., 143 230 руб., 144 000 руб., 145 290 руб.), которые находятся в ячейках В2;В13 соответственно (данные условия). Новые значения х, т.е. числа 13, 14,15,16,17 введём в ячейки А14…А18. Для того чтобы определить ожидаемые значения цен на март, апрель, май, июнь, июль, выделим любой интервал ячеек, например, B14:B18 (по одной ячейке для каждого месяца) и в строке формул введем функцию:

После нажатия клавиш Ctrl+ Shift+Enter данная функция будет выделена как формула вертикального массива, а в ячейках B14:B18 появится результат: <146172;174190;148208;149226;150244>.

Таким образом, в июле фирма может ожидать цену около 150 244 руб.

б) Тот же результат будет получен, если вводить в формулу не все массивы переменных х и у, а использовать часть массивов, которые предусматриваются автоматически по умолчанию. Тогда формула (10) примет вид:

В формуле (11) используется массив по умолчанию (1:2:3:4:5:6:7:8:9:10:11:12) для аргумента «известные_значения_х», соответствующий 12 месяцам, для которых имеются данные по продажам. Он должен был бы быть помещен в формуле (11) между двумя знаками ;;. Массив (13:14:15:16:17) соответствует следующим 5 месяцам, для которых и получен массив результатов (146172:147190:148208:149226:150244).

Элементы массивов разделяет знак «:», который указывает на то, что они расположены по столбцам.

в) Аргумент «новые значения х» можно задать другим массивом ячеек, например, В14:В18, в которые предварительно записаны те же номера месяцев 13,14,15,16,17. Тогда вводимая в строку формул функция примет вид =ТЕНДЕНЦИЯ(В2:В13;;В14:В18).

Пример 2. Функция ЛИНЕЙН

а) Дана таблица изменения температуры в течение шести часов, введённая в ячейки D2 :E7 (табл. 13.2 таблица 13.2).

Требуется определить температуру во время восьмого часа.

Таблица 13.2. Данные для примера 1
DE
1х-№часау-t о , град.
212
323
434
547
6512
7618

Выделим ячейки D8:E12 для вывода результата, введем в строку ввода формулу =ЛИНЕЙН(Е2:Е7;D2:D7;1;1), нажмем клавиши Сtrl+Shift+Enter, в выделенных ячейках появится результат:

3,142857-3,3333333
0,5408482,106302
0,8940882,2625312
33,767444
172,857120,47619

Таким образом, коэффициент m=3,143 со стандартной ошибкой 0,541, а свободный член b=-3,333 со стандартной ошибкой 2,106, т.е. функция, описывающая данные табл. 13.2 таблица 13.2, имеет вид

Стандартные ошибки показывают максимально возможное отклонение параметра от рассчитанной величины. Для у оно составляет 2,263, т.е. реальное значение у может лежать в пределах .

Точность приближения к табличным данным (коэффициент детерминированности r 2 ) составляет 0,894 или 89,4%, что является высоким показателем. При х=8 получим: у=3,143*8-3,333=21,81 град.

б) Тот же результат можно получить, использовав функцию =ТЕНДЕНЦИЯ(Е2:Е7;;G2:G5) для, например, следующих четырёх часов, предварительно введя в ячейки G2 :G5 числа с 7 до 10. Выделив ячейки Н2:Н5, введя в строку формул эту функцию и нажав Сtrl+Shift+Enter, получим в выделенных ячейках массив <18,667;21,80952;24,95238;28,09524>, т.е. для восьмого часа значение град.

в) Функция ПРЕДСКАЗ ( FORECAST ) – позволяет предсказать значение у для нового значения х по известным значениям х и у, используя линейное приближение зависимости у=f(x).

Для данных примера 2 ввод формулы =ПРЕДСКАЗ(8;Е2:Е7;D2:D7) выводит в заранее выделенной ячейке результат 21,809. Новое значение х может быть задано не числом, а ячейкой, в которую записано это число.

Отличие функции ПРЕДСКАЗ от функции ТЕНДЕНЦИЯ заключается в том, что ПРЕДСКАЗ прогнозирует значения функции линейного приближения только для одного нового значения х.

Экспоненциальная регрессия

Пример 3

а) Функция ЛГРФПРИБЛ.

Рассмотрим условие примера 2.

Поскольку функция в табл. 13.2 таблица 13.2 носит явно нелинейный характер, целесообразно искать ее приближение в виде не прямой линии, как в примере 2, а в виде нелинейной кривой. Из всех видов нелинейности (гипербола, парабола, и др.) Excel реализует только экспоненциальное приближение вида у=b*mx c помощью функции ЛГРФПРИБЛ, которая рассчитывает для этого уравнения значения b и m .

Выделим для результата блок ячеек F8:G12 , введём в строку формул Функцию =ЛГРФПРИБЛ(Е2:Е7;D2:D7;1;1), нажмем клавиши Сtrl+Shift+Enter, в выделенных ячейках появится результат:

1,566280151,196513
0,020382990,07938
0,991813340,085268
484,5996874
3,523359210,029083

Таким образом, коэффициент m=1,566, а b=1,197, т.е. уравнение приближающей кривой имеет вид:

со стандартными ошибками для m, b , и у равными 0,02, 0,079 и 0,085 соответственно. Коэффициент детерминированности r 2 =0,992, т.е. полученное уравнение даёт совпадение с табличными данными с вероятностью 99,2%.

Поскольку интерполяция табл. 13.2 таблица 13.2 экспоненциальной кривой даёт более точное приближение (99,2%) и с меньшими стандартными ошибками для m, b и у, в качестве приближающего уравнения принимаем уравнение (13).

При х=8 получим у=1,197*34,363=41,131 град.

б) Функция РОСТ вычисляет прогнозируемое по экспоненциальному приближению значение у для новых значений х, имеет формат:

Выделим блок ячеек F14: F17 , введём формулу =РОСТ(Е2:Е7;D2:D7;G2:G5;ИСТИНА), в выделенных ячейках появится массив чисел <27,6696434;43,3384133;67,8800967;106,319248>, т.е. при х=8 значение функции у=43,34 град. Это значение немного отличается от вычисленного в п. а), поскольку функция РОСТ использует для расчетов линию экспонециального тренда.

Примечание. При выборе экспоненциальной приближающей кривой следует учитывать, что интерполировать ею можно только участки, где функция монотонно возрастает или убывает (при отрицательном аргументе х), т.е. функцию, имеющую точки перегиба (например, параболу, синусоиду, кривую рис. 2 – т. А и др.) следует разбить на участки монотонного изменения от одной точки перегиба до другой и каждый участок интерполировать отдельно. Для рисунка 2 функцию нужно разбить на 2 участка – от начала до т. А и от т. А до конца кривой.

Множественная линейная регрессия

Пример 4

Предположим, что коммерческий агент рассматривает возможность закупки небольших зданий под офисы в традиционном деловом районе. Агент может использовать множественный регрессионный анализ для оценки цены здания под офис на основе следующих переменных:

у – оценочная цена здания под офис;

х1 – общая площадь в квадратных метрах;

х2 – количество офисов;

х3 – количество входов;

х4 – время эксплуатации здания в годах.

Агент наугад выбирает 11 зданий из имеющихся 1500 и получает следующие данные:

АВСDЕ
1х1— площадь, м2х2 – офисых3 – входых4 – срок, лету – цена, у.е.
22310222042000
323332212144000
4235631,533151000
523793243151000
624022353139000
724254323169000
8244821,599126000
924712234142000
1024943323163000
1125174455169000
1225402322149000

«Пол-входа» означает вход только для доставки корреспонденции.

В этом примере предполагается, что существует линейная зависимость между каждой независимой переменной (х1234) и зависимой переменной (у), т.е. ценой зданий под офис в данном районе.

  • выделим блок ячеек А14:Е18 (в соответствии с табл. 13.1 таблица 13.1),
  • введём формулу =ЛИНЕЙН(Е2:Е12;А2:D12;ИСТИНА;ИСТИНА), —
  • нажмём клавиши Ctrl+Shift+Enter ,
  • в выделенных ячейках появится результат:
АВСDE
14-234,2372553,21012529,768227,641352317,83
1513,2680530,6691400,0668385,4293712237,36
160,99674970,5784#Н/Д#Н/Д#Н/Д
17459,7536#Н/Д#Н/Д#Н/Д
1817323933195652135#Н/Д#Н/Д#Н/Д

Уравнение множественной регрессии теперь может быть получено из строки 14:

Теперь агент может определить оценочную стоимость здания под офис в том же районе, которое имеет площадь 2500 м 2 , три офиса, два входа, зданию 25 лет, используя следующее уравнение:

Это значение может быть вычислено с помощью функции ТЕНДЕНЦИЯ:

При интерполяции с помощью функции

для получения уравнения множественной экспоненциальной регрессии выводится результат:

0,998357521,01737921,08301861,000170481510,335
0,000148370,00650410,00487246,033Е-050,1365601
0,991588750,0105158#Н/Д#Н/Д#Н/Д
176,8325486#Н/Д#Н/Д#Н/Д
0,078218510,0006635#Н/Д#Н/Д#Н/Д
#Н/Д#Н/Д#Н/Д#Н/Д#Н/Д

Коэффициент детерминированности здесь составляет 0,992 (99,2%), т.е. меньше, чем при линейной интерполяции, поэтому в качестве основного следует оставить уравнение множественной регрессии (14).

Таким образом, функции ЛИНЕЙН, ЛГРФПРИБЛ, НАКЛОН определяют коэффициенты, свободные члены и статистические параметры для уравнений одномерной и множественной регрессии, а функции ТЕНДЕНЦИЯ, ПРЕДСКАЗ, РОСТ позволяют получить прогноз новых значений без составления уравнения регрессии по значениям тренда.

ЗАДАНИЕ

Вариант задания к данной лабораторной работе включает две задачи. Для каждой из них необходимо составить и определить:

  1. Таблицу исходных данных, а также значений, полученных методами линейной и экспоненциальной регрессии.
  2. Коэффициенты в уравнениях прямой и экспоненциальной кривой (функции ЛИНЕЙН и ЛГРФПРИБЛ), напишите уравнения прямой и экспоненциальной кривой для простой и множественной регрессии.
  3. Погрешности (ошибки) прямой и экспоненциальной кривой, вычислений для коэффициентов и функций, коэффициенты детерминированности. Оценить, какой тип регрессии наилучшим образом подходит для вашего варианта задания.
  4. Прогноз изменения данных, выполненный с использованием линейной и экспоненциальной регрессии (функции ТЕНДЕНЦИЯ, ПРЕДСКАЗ, РОСТ).
  5. Построить гистограмму (или график) исходных данных для задачи 1 (одномерная регрессия), отобразить на ней линию тренда, а также соответствующее ей уравнение и коэффициент детерминированности.

Варианты заданий (номер варианта соответствует номеру компьютера).

  1. На рынке наблюдается стойкое снижение цен на компьютеры. Сделать прогноз, на сколько необходимо будет снизить цену на компьютеры в следующем месяце в вашей фирме, чтобы как минимум сравнять её с ценой на аналогичные компьютеры в конкурирующей фирме, если известна динамика изменения цен на них в конкурирующей фирме за последние 12 месяцев.

Для выполнения задания нужно ввести ряд из 12 ячеек с ценами конкурирующей фирмы, сделать прогноз цены на следующий месяц и др. (см. Задание).

  1. Известна структура расходов фирмы на рекламу в газетах, на радио, в журналах, на телевидении, на наружную рекламу (в процентах от общей суммы), а также оборот фирмы в каждом за последние 6 месяцев. Какой оборот можно ожидать в следующем месяце, если предполагается следующая структура расходов на рекламу: газеты-40%, журналы-40%, радио-5%, телевидение-14%, наружная реклама-1%.

Для выполнения задания нужно составить таблицу со столбцами вида:

Месяцх1-газеты,%х2-журн.,%х3-рад.,%х4-телев.,%х5-нар. рекл.,%Оборот, $
1373412105410000
2383710116411500
339389137413700
440398158417050
541407169420000
6424251710425000

и сделать множественный регрессионный прогноз (см. Задание).

  1. Имеются данные об объеме продаж в расчете на душу населения по хлебу и молоку и данные по годовым доходам на душу за 10 лет. По каждому товару построить модели регрессии для объемов продаж и функции размера доходов. Сделать прогноз о продажах и доходах на следующий год.

Для выполнения задания нужно составить таблицу вида:

Годы1234567891011
х1-хлеб, кг23,526,727,930,131,535,738,340,141,542,8
х2-молоко, л20,452223,825,927,42933,536,838,139,5
У-доход, р.66007200840010500127501473016240170001805018250

и получить два уравнения – у=f(x1) и у=f(x2), сделать прогноз на следующий год для рядов х1, х2, у и др. (см. Задание).

  1. Руководство фирмы провело оценку качеств пяти рекламных агентов по следующим признакам: х1 – эрудиция, х2 – знание предметной области. Полученные средние оценки, нормированные от 0 до 1, были сопоставлены с оценками эффективности деятельности агентов (% успешных сделок от количества возможных). Определить эффективность для агента с усреднёнными качествами. Сравнить её со средней эффективностью упомянутых 5 агентов.

Исходные данные нужно ввести в таблицу вида:

АВСDEFG
1х1-эрудициях2-энергичностьх3-людих4-внешностьх5-знанияЭффективность
2Агент 10,80,20,40,61,076%
3Агент 20,740,30,390,580,9578%
4Агент 30,670,410,350,50,8379%
5Агент 60,590,590,330,470,880%
6Агент 50,50,70,30,40,7481%
7Средняя эффективность пяти агентов
8Средний агент0,50,50,50,50,5

Массив ячеек В2-F6 заполняется произвольными числами от 0 до 1, столбец G2 -G6 – процентами удачных сделок по принципу «Чем выше уровень качеств агента, тем выше эффективность его работы», в ячейке G7 должна быть формула для вычисления среднего значения ячеек G2:G6 , в ячейке G8 нужно вычислить значение эффективности для среднего агента по формуле, полученной в результате множественного регрессионного анализа работы пяти агентов. Остальные пункты – см. Задание.

  1. Автосалон имеет данные о количестве проданных автомобилей «Мерседес» и «БМВ» за последние 4 квартала. Учитывая тенденцию изменения объёма продаж, определить, каких автомобилей нужно закупить больше («Мерседес» или «БМВ») в следующем квартале?

Для выполнения задания нужно составить и заполнить таблицу вида:

Х12345
Мерседес ( Y1 )10121518
БМВ ( Y2 )9101417

сделать прогноз продаж на новый квартал и выполнить другие пункты задания.

  1. Известны следующие данные о 5 недавно проданных подержанных автомобилях: у – стоимость продажи, х1 – стоимость аналогичного нового автомобиля, х2 – год выпуска, х3 – пробег, х4 – количество капитальных ремонтов, х5 – экспертные заключения о состоянии кузова и техническом состоянии автомобилей (по 10-бальной шкале). Определить, сколько может стоить автомобиль с соответствующими характеристиками: 340 000, 1998г., 140000км., 1, 6 (см. пример 4).
  1. Определить минимально необходимый тираж журнала и возможный доход от размещения в нём рекламы в следующем месяце, если известны данные об объёмах продаж этого журнала и доходах от размещения рекламы за последние 12 месяцев (считать, что расценки на рекламу не менялись).

Для выполнения задания нужно составить таблицу вида:

Месяц123456789101112
Тираж,тыс.100120121,7124,2128130,1133,45136141142,1143,8145
Доход,тыс. руб.128135138142147154159161163168170,5172

и заполнить ячейки за 12 месяцев условными данными. По этим данным нужно сделать линейный и экспоненциальный прогноз и др. (см. Задание).

  1. В целях привлечения покупателей и увеличения оборота фирма проводит стратегию ежемесячного снижения цен на свой товар. На основании данных о динамике изменения цен, объемов продаж в данной фирме и ещё в 3 конкурирующих фирмах за последние 12 месяцев сделать прогноз о том, возрастает ли объём продаж у данной фирмы при очередном снижении цен в следующем месяце, если предположить, что цены и объёмы у конкурентов в следующем месяце будут средние за рассматриваемый период.

Для выполнения задания нужно составить таблицу вида:

Мес.ФирмаКонкурент 1Конкурент 2Конкурент 3
1У-объёмх1-ценах2-объёмх3-ценах4-объёмх5-ценах6-объёмх7-цена
2100001875120001720125001740119701700
3110001850123401705126201735121001690
4115701810127501675127401710123501645
5118501750129101630129601695125001615
6121001685131001615130001674126301580
7123401630135701600132101625129201545
8127501615138201575133201610131501520
9129101600139801515134601560133001500
10131001575140001500136001525136101490
11132301530140701495137801500138501485
12134701510141201488139001460140001475
13
  1. На основании данных о курсе американского доллара и немецкой марки в первом полугодии сделать прогноз о соотношении данных валют на второе полугодие. Во что будет выгоднее вкладывать деньги в конце года?

Для выполнения задания нужно составить таблицу вида:

Месяц123456789101112
Доллар24,524,925,726,928,028,829,329,730,530,931,8
Марка72,176,379,685,389,790,993,296,4100,2101,6104,9

и сделать линейный прогноз на следующие 6 месяцев и др. (см. Задание).

  1. Известны данные за последние 6 месяцев о том, сколько раз выходила реклама фирмы, занимающейся недвижимостью, на телевидении – х1, радио – х2, в газетах и журналах – х3, а также количество звонков –у1 и количество совершённых сделок – у2. Какое соотношение количества совершённых сделок к количеству звонков у (в %) можно ожидать в следующем месяце, если известно, сколько раз выйдет реклама в каждом из перечисленных средств массовой информации.

Для выполнения задания нужно составить и заполнить таблицу вида:

ABCDE
1месяцх1х2х3y=у2/у1*100%
2115102478%
3216112380%
4318122281%
5419122284%
6521132185%
7622142089%
87

и выполнить применительно к таблице пункты Задания.

  1. Для некоторого региона известен среднегодовой доход населения, а также данные о структуре расходов (тыс. руб. в год) за последние 5 лет по следующим статьям: питание – х1, жильё – х2, одежда – х3, здоровье – х4, транспорт – х5, отдых – х6, образование – х7. На основании известных данных провести анализ потребительского кредита (или накопления) в следующем 6 году.

Для выполнения задания нужно составить и заполнить таблицу вида

Годых1х2х3х4х5х6х7Расход ДоходКредит(Y)
1521,310,35418,621,43,1
25,22,21,21,20,44,84,519,5222,5
35,52,51,11,40,64,64,920,623,42,8
45,82,70,91,614,25,621,825,84
5730,821,246,524,726,21,5
67,53,30,72,21,53,8726,527,5

В ячейках столбца ) должны быть записаны формулы, вычисляющие суммы всех расходов х12+…+х7 в каждом году, в ячейках столбца Доход – соответствующие среднегодовые доходы, в ячейках столбца Кредит – формулы разности содержимого ячеек с ежегодными доходами и затратами, т.е. Кредит = Доход- . Затем для столбца Кредит нужно выполнить регрессионный прогноз на следующий год и другие пункты Задания.

  1. Для 10 однокомнатных квартир, расположенных в одном районе, известны следующие данные: общая площадь – х1, жилая площадь – х2, площадь кухни – х3, наличие балкона – х4, телефона – х5, этаж – х6, а также стоимость – y . Определить, сколько может стоить однокомнатная квартира в этом районе без балкона, без телефона, расположенная на 1-ом этаже, общей площадью 28 м 2 , жилой – 16 м 2 , с кухней 6 м 2 .
КвартирыX1X2X3X4X5Стоимость ( y )
1413371242000
240307,72340000
3453780547000
446,33491649500
5503691451000
653409,51755000
75641100962000
860471221062300
965491421269000
10705814,521472000
112816601
  1. Определить возможный прирост населения (кол-во человек на 1000 населения) в 2011 году, если известны данные о кол-ве родившихся и умерших на 1000 населения в 1997-2006 годах.
Годы19971998199920002001200220032004200520062011
Родились100110130155170174180185190200
Умерли108115135160178180186190197205
  1. После некоторого спада наметился рост объёмов продаж матричных принтеров. Используя данные об объёмах продаж, ценах на матричные, струйные и лазерные принтеры, а также на их расходные материалы за последние 6 месяцев, определить возможный спрос на матричные принтеры в следующем месяце.

Проанализируйте, связано ли увеличение спроса на матричные принтеры с уменьшением спроса на струйные и лазерные.

Матричные принтерыСтруйные принтерыЛазерные принтеры
Спрос у1Цена х1Рас.мат. z1Спрос у2Цена х2Рас.мат. z/2Спрос у3Цена х3Рас.мат. z3
156417217426238455813125171558
258425017924239857011129841612
36042891822324015989132591789
46542971942024566498136871865
56943052051925127227140131998
67543182131825437686145872200
744562201726017795147892245

Необходимо сделать прогноз на седьмой месяц по уравнению у1=f(x1,z1), получить уравнение y=(у2,x2, z2, у3, x3, z2 ) и проанализировать его. Если слагаемые у2 и у3 входят в регрессионное уравнение со знаком «-«, то уменьшение спросов у2 и у3 ведёт к увеличению спроса у1.

  1. Построить прогноз развития спроса населения на телевизоры, если известна динамика продаж телевизоров (тыс. шт.) и динамика численности населения (тыс. чел.) за 10 лет. По данным таблицы сделать прогноз по обоим рядам на следующий год. Выполнить другие пункты задания.
Годы20012002200320042005200620072008200920102011
Динамика населения (тыс. чел)21,526,131,534,945,150,85659,463,967,1
Динамика продаж (тыс. шт.)2,52,93,43,94,14,855,65,96,2
  1. Размещая рекламу в 4-х изданиях, фирма собрала сведения о поступивших на нее откликов – у и сопоставила их с данными об изданиях: х1 – стоимость издания, х2 – стоимость одного блока рекламы, х3 – тираж, х4 – объём аудитории, х5 – периодичность, х6 – наличие телепрограммы. Какое количество откликов можно ожидать на рекламу в издании со следующими характеристиками: 15000 руб., 10$, 1000 экз., 25000 чел., 4 раза в месяц, без телепрограммы.

Пользуясь данными таблицы

Изданиях1х2х3х4х5х6Отклики, у
110000137001500041108
212500128502200081115
31589011,896028000100120
41785011120032000261128
5150001010002500040

необходимо сделать прогноз при заданных характеристиках.

  1. Размещая свою рекламу в 2-х печатных изданиях одновременно, фирма собрала сведения о количестве поступивших звонков и количестве заключенных сделок по объявлениям в каждом из указанных изданий за последние 12 месяцев. Определить, в каком из изданий и насколько эффективность размещения рекламы в следующем месяце будет больше?
МесяцыИздание 1Издание 2
ЗвонкиСделкиЗвонкиСделки
1986611279
21057214385
31057515090
411080130100
51259012075
614010011580
71369512882
81378713278
914510213888
101237514392
111307915097
121398815597
13

Эффективность определяется как сделки/звонки. Сделать линейный и экспоненциальный прогнозы по обоим изданиям.

  1. Пусть комплект мягкой мебели (диван + 2 кресла) характеризуется стоимостью комплектующих: х1— деревянные подлокотники, х2 – велюровое покрытие, х3 – кресло-кровать, х4 – угловой диван, х5 – раскладывающийся диван, х6 – место для хранения белья. По данным о стоимости 5 комплектов сделать вывод о возможной стоимости комплекта с обычным раскладывающимся диваном, с местом для белья, без деревянных подлокотников и велюрового покрытия, с креслом кроватью.

Пользуясь данными таблицы

Признаких1х2х3х4х5х6У -стоимость
Комплект 125054025004300640080013850 руб.
Комплект 232065030004800700098015770 руб.
Комплект 3400730390060008500110016730 руб.
Комплект 44521300430075009200205024350 руб.
Комплект 5550175064001245016700430042150 руб.
Комплект 66708002750670088001000

сделать прогноз и выполнить другие пункты задания.

  1. Для 2-х радиостанций известны данные об изменении объёма аудитории и динамике роста цен за 1 минуту эфирного времени за последние 12 месяцев. Определить, для какой радиостанции стоимость одного контакта со слушателем будет меньше?
МесяцРадиостанция 1Радиостанция 2
АудиторияЦена 1 мин.АудиторияЦена 1 мин.
125000080003000007560
254000065004500006340
358000064604900006250
465000063005500006000
573000060606100005730
675000060006900005300
780000054007500005100
884000053207800005000
989000051308700004700
1095000050009000004650
11100000048009400004600
121108000470010250004540
13
Контакт

В строке «Контакт» в ячейках С8 и D8 должны быть записаны формулы = С7/В7 и =Е7/D7 соответственно, вычисляющие стоимость 1 мин. Эфира для одного слушателя в прогнозируемом месяце. Прогноз нужно выполнить для линейного и экспоненциального приближений и выбрать более достоверный, а также сделать другие пункты Задания.

  1. На основании данных ежемесячных исследований известна динамика рейтинга банка (в условных единицах) за последние 6 месяцев в следующих сферах:
  2. менеджмент и технология – х1;
  3. менеджеры и персонал – х2;
  4. культура банковского обслуживания – х3;
  5. имидж банка на рынке финансовых услуг – х4;
  6. реклама банка – х5.

Определить возможное изменение количества вкладчиков данного банка в следующем месяце, если известны значения сфер рейтинга и количество вкладчиков в каждом из рассматриваемых 6 месяцев.


источники:

http://topuch.ru/lekciya-po-ekonometrike/index2.html

http://intuit.ru/studies/courses/3659/901/lecture/32718