Уравнение регрессионной зависимости может быть только

Уравнение регрессии. Уравнение множественной регрессии

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них – уравнение регрессии — рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х – независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая – зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии – это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х1 , х2 . хс)+E. В данной ситуации у выступает зависимой переменной, а х – объясняющей. Переменная Е — стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная – это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е — стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный – о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 – тем сильнее связь между параметрами, чем ближе к 0 – тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого – вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель – свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х – нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y – тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x1,x2,…,xm)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а0 + a1х1 + а2х2,+ . + amxm. При этом а2, am, считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах1 b1 х2 b2 . xm bm . В данном случае показатели b1, b2. bm – называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям – система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий – отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

R — значит регрессия

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин — Машинного Обучения и Больших Данных. Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии. Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале — уметь отличить сигнал от шума.

Для этой цели мы будем использовать язык программирования и среду разработки R, который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Введение в регрессионный анализ

Если имеется корреляционная зависимость между переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения называется регрессией y по x .

Основу регрессионного анализа составляет метод наименьших квадратов (МНК), в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей минимальна.

Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.

Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений вокруг регрессии является дисперсия.

  • k — число коэффициентов в системе уравнений регрессии.

Чаще всего используется модель линейной регрессии, а все нелинейные зависимости приводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

Линейная регрессия

Уравнения линейной регрессии можно записать в виде

В матричном виде это выгладит

  • y — зависимая переменная;
  • x — независимая переменная;
  • β — коэффициенты, которые необходимо найти с помощью МНК;
  • ε — погрешность, необъяснимая ошибка и отклонение от линейной зависимости;

Случайная величина может быть интерпретирована как сумма из двух слагаемых:

  • полная дисперсия (TSS).
  • объясненная часть дисперсии (ESS).
  • остаточная часть дисперсии (RSS).

Еще одно ключевое понятие — коэффициент корреляции R 2 .

Ограничения линейной регрессии

Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.

  1. Линейность, собственно. Увеличение, или уменьшение вектора независимых переменных в k раз, приводит к изменению зависимой переменной также в k раз.
  2. Матрица коэффициентов обладает полным рангом, то есть векторы независимых переменных линейно независимы.
  3. Экзогенность независимых переменных. Это требование означает, что математическое ожидание погрешности никоим образом нельзя объяснить с помощью независимых переменных.
  4. Однородность дисперсии и отсутствие автокорреляции. Каждая εi обладает одинаковой и конечной дисперсией σ 2 и не коррелирует с другой εi. Это ощутимо ограничивает применимость модели линейной регрессии, необходимо удостовериться в том, что условия соблюдены, иначе обнаруженная взаимосвязь переменных будет неверно интерпретирована.

Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.

Неоднородность дисперсии

При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.

Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.

Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.

  • Автокорреляция проверяется статистикой Дарбина-Уотсона (0 ≤ d ≤ 4). Если автокорреляции нет, то значения критерия d≈2, при позитивной автокорреляции d≈0, при отрицательной — d≈4.
  • Неоднородность дисперсии — Тест Уайта, , при \chi<^2>_<\alpha;m-1>$» data-tex=»inline»/> нулевая гипотеза отвергается и констатируется наличие неоднородной дисперсии. Используя ту же можно еще применить тест Бройша-Пагана.
  • Мультиколлинеарность — нарушения условия об отсутствии взаимной линейной зависимости между независимыми переменными. Для проверки часто используют VIF-ы (Variance Inflation Factor).

В этой формуле — коэффициент взаимной детерминации между и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.

Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова, согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

Как преодолеть эти ограничения

Нарушения одной или нескольких ограничений еще не приговор.

  1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
  2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
  3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии, и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией. Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

Линейная регрессия плюсов на Хабре

Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.

Загружает данные из tsv файла.

  • points — Рейтинг статьи
  • reads — Число просмотров.
  • comm — Число комментариев.
  • faves — Добавлено в закладки.
  • fb — Поделились в социальных сетях (fb + vk).
  • bytes — Длина в байтах.

Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях. Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная — нет надобности исключать ни одну из независимых переменных.

Теперь собственно сама модель, используем функцию lm .

В первой строке мы задаем параметры линейной регрессии. Строка points

. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points

reads , набор переменных — points

Перейдем теперь к расшифровке полученных результатов.

  • Intercept — Если у нас модель представлена в виде , то тогда — точка пересечения прямой с осью координат, или intercept .
  • R-squared — Коэффициент детерминации указывает насколько тесной является связь между факторами регрессии и зависимой переменной, это соотношение объясненных сумм квадратов возмущений, к необъясненным. Чем ближе к 1, тем ярче выражена зависимость.
  • Adjusted R-squared — Проблема с в том, что он по любому растет с числом факторов, поэтому высокое значение данного коэффициента может быть обманчивым, когда в модели присутствует множество факторов. Для того, чтобы изъять из коэффициента корреляции данное свойство был придуман скорректированный коэффициент детерминации .
  • F-statistic — Используется для оценки значимости модели регрессии в целом, является соотношением объяснимой дисперсии, к необъяснимой. Если модель линейной регрессии построена удачно, то она объясняет значительную часть дисперсии, оставляя в знаменателе малую часть. Чем больше значение параметра — тем лучше.
  • t value — Критерий, основанный на t распределении Стьюдента . Значение параметра в линейной регрессии указывает на значимость фактора, принято считать, что при t > 2 фактор является значимым для модели.
  • p value — Это вероятность истинности нуль гипотезы, которая гласит, что независимые переменные не объясняют динамику зависимой переменной. Если значение p value ниже порогового уровня (.05 или .01 для самых взыскательных), то нуль гипотеза ложная. Чем ниже — тем лучше.

Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.

Проверим значения параметров линейной регрессии.

Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми , F-статистика выросла, так же как и скорректированный коэффициент детерминации .

Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.

И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.

В заключение

Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.

Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

Тест по «Эконометрике»

Автор: lopo15 • Февраль 20, 2018 • Тест • 1,628 Слов (7 Страниц) • 10,718 Просмотры

1 Что является предметом изучения эконометрики?

факторы, формирующие развитие экономических явлений и процессов

2 Для чего составляются эконометрические модели?

3для выявления качественного и количественного влияния разных факторов на объект

3 Эконометрика занимается изучением

качественного и количественного влияния разных факторов на экономические объекты

4 Для решения эконометрических задач необходимо

построение математической модели

предварительное решение нескольких задач математического анализа

наличие специализированных программных средств

5 Что такое математическая модель экономического объекта?

записанное в математической форме абстрактное отображение экономического объекта

6 Математическая модель экономического объекта предназначена для

экспериментального изучения поведения объекта в различных обстоятельствах

7 Что может быть выполнено с помощью эконометрической модели?

прогнозирование поведения изучаемого экономического объекта

8 Математической моделью в эконометрических задачах является

уравнение регрессии или система уравнений регрессии

9 В эконометрических задачах математическая модель

это уравнение регрессии или система уравнений регрессии

10 Что означает наличие прямой связи между переменными х и у?

3что при увеличении значений х увеличиваются и значения у

11 Что означает наличие обратной связи между переменными х и у?

что при уменьшении значений х значения у увеличиваются

12 В каком случае связь между двумя факторами является тесной?

3если их коэффициент корреляции по модулю больше или равен 0,7

13 Для определения тесноты линейной связи между двумя факторами необходимо

рассчитать коэффициент корреляции

14 Взаимозависимости экономических переменных часто описываются

15 Линейная связь между переменными означает, что

2график зависимости представляется прямой линией

16 Регрессионный анализ оценивает

формулу связи двух или нескольких переменных

17 Оценка вида связи между переменными возможна

с помощью регрессионного анализа

18 Функция, описывающая корреляционную зависимость между х и у, называется

регрессией у на х

19 Регрессия у на х — это

формула связи между переменными у и х

20 Какой метод позволяет определить оценки параметров регрессии?

метод наименьших квадратов

21 Метод наименьших квадратов позволяет

найти оценки параметров регрессии

22 Метод наименьших квадратов состоит

2в минимизации суммы квадратов отклонений реальных значений у от расчетных

23 Решение по МНК в пакете Excel можно получить при помощи

опций Анализ данных — Регрессия

24 Что такое МНК?

3метод наименьших квадратов

25 Для чего применяется МНК?

для оценки параметров регрессии

26 Для оценки формы связи между переменными служит

27 В каком случае регрессия является парной?

4если в уравнение регрессии входит одна зависимая и одна независимая переменная

28 В каком случае регрессия является множественной?

3если в ур-е регрессии входит одна зависимая и множество независимых переменных

29 Какие виды регрессионных зависимостей существуют?

парная, множественная, линейная, нелинейная

30 Какого вида регрессионная зависимость между переменными не может существовать?

прямая, линейная, нелинейная

31 Что является математической моделью эконометрической задачи?

одно уравнение или система уравнений регрессии

32 Можно ли на основании решения Excel прогнозировать изменение Y в зависимости от изменения X?

2можно, только если построенная регрессионная модель является качественной

33 После записи уравнения регрессии необходимо

оценить качество полученного уравнения

34 Регрессионная модель считается качественной при обязательном выполнении следующих условий:

1связь в модели тесная, объясняющие переменные значимы, наблюдений достаточно

35 При решении эконометрических задач уравнение регрессии является

математической моделью зависимости переменных

36 Уравнение регрессии оценивает

форму зависимости исследуемых переменных

37 Для оценки формы связи между переменными служит

38 Для чего составляется уравнение регрессии?

2для определения формы зависимости исследуемых переменных

39 Значения х и у для поиска уравнения регрессионной зависимости берутся

из статистических данных

40 Значения a и b для поиска уравнения регрессионной зависимости берутся

из расчетов по методу наименьших квадратов

41 Уравнение регрессии записывается на основании

1величин коэффициентов регрессии

42 Какие величины служат для записи уравнения регрессии?

43 В уравнении регрессии зависимая переменная обычно обозначается как

44 В уравнении регрессии независимая переменная обычно обозначается как

45 В уравнении регрессии факторы обычно обозначаются как

46. В уравнении регрессии параметры обычно обозначаются как

47. В уравнение регрессии входят

зависимая переменная, независимые переменные и коэффициенты при них

48 В уравнении регрессионной зависимости может быть только

3одна зависимая и одна или несколько независимых переменных

49. Сколько объясняющих переменных может быть в уравнении регрессии?

произвольное количество (желательно, не более трети от числа наблюдений)

50 Сколько зависимых переменных может быть в уравнении регрессии?

51 В уравнении y = a + bx коэффициенты а и b — это:

52 В уравнении y = a + bx коэффициент а является

53 В уравнении y = a + bx коэффициент b является

54 В уравнении регрессии параметры регрессии обычно обозначаются как

55 В результатах решения задачи коэффициент регрессии а отображается как:

56 В уравнении y = a + bx величина коэффициента а отражает

значение у при нулевых значениях х

56. В уравнении y = a + bx величина коэффициента а отражает

значение у при единичном увеличении х

значимость или незначимость переменной у

значимость или незначимость коэффициента а

57 В результатах регрессионного анализа Y-пересечение — это

коэффициент регрессии а

58. Чему будет равен Y в парной линейной регрессии, если Y-пересечение = 5, b = 7, х = 10?

59 Чему будет равен Y в парной линейной регрессии, если Y-пересечение = 2, b = 6, х = 4?

60 Чему будет равен Y в множественной линейной регрессии, если Y-пересечение = 2, b1 = 5, b2 = 2, х1 = 4, x2 = 1?

61 Чему будет равен Y в множественной линейной регрессии, если Y-пересечение = 10, b1 = 1, b2 = 2, х1 = 3, x2 = 4?

62 Чему будет равен Y в множественной линейной регрессии, если Y-пересечение = 6, b1 = 2, b2 = 5, х1 = 8, x2 = 4?

63 В уравнении регрессии у = a + bx коэффициент а показывает

прогнозируемую величину у при х = 0

64 В уравнении регрессии у = a + bx коэффициент а показывает

величину у при равенстве х нулю

65 Как в уравнении регрессии интерпретируется коэффициент перед переменной х?

показывает величину изменения у при единичном изменении х

66 В уравнении регрессии у = a + bx коэффициент b показывает

2величину изменения у при единичном изменении х

67 Вероятность выполнения нуль-гипотезы для коэффициента регрессии оценивается с помощью

Р-значения этого коэффициента регрессии

68 В уравнении y = a + bx незначимость коэффициента регрессии b означает, что

влияние переменной х на коэффициент b отсутствует

влияние переменной у на коэффициент b отсутствует

влияние коэффициента b на переменную х отсутствует

69 В уравнении y = a + bx незначимость коэффициента регрессии а означает, что

3влияние коэффициента а на переменную у отсутствует

70 В уравнении y = a + bx незначимость Y-пересечения означает, что

в уравнении регрессии отсутствует константа

71 Что означает не значимость коэффициента регрессии?

что соответствующая ему независимая переменная не влияет на зависимую

72 Значимость коэффициентов регрессии определяется с помощью:

73 Что означает статистическая незначимость параметра (коэффициента) регрессии?

высокую вероятность равенства данного параметра нулю

74. Когда коэффициент регрессии считается значимым?

если его Р-значение меньше 5%

75 Какая величина «Р-значения» подтверждает влияние х на у?

Р-значение для него меньше 0,05

76 При одновременной незначимости нескольких объясняющих переменных модели нужно

4удалить их последовательно, начиная с той, чье Р-значение больше

77 Что следует делать, если коэффициент регрессии не значим?

удалять из модели переменную, которой он соответствует

78 Теснота связи в уравнении регрессии определяется с помощью

79 Какой показатель характеризует тесноту связи в уравнении регрессии?

80 С помощью какой величины определяется теснота связи в уравнении регрессии?

с помощью коэффициента корреляции

81 Что проверяется с помощью коэффициента корреляции?

теснота связи между факторами в уравнении регрессии

82 Коэффициент корреляции оценивает

тесноту связи в уравнении регрессии

83 Для констатации наличия тесной связи в регрессионной модели необходимо

чтобы модуль коэффициента корреляции был не меньше 0,7

84 Тесная связь между перменными модели констатируется в том случае, если

коэффициент корреляции по модулю не меньше 0,7

85 Коэффициент корреляции при решении в пакете Excel выдается как величина

86 В результатах решения задачи в Excel коэффициент корреляции отображается как:

87 Какие действия приводят к увеличению тесноты связи в регрессионной модели?

удаление выбросов, добавление ранее неучтенных факторов, видоизменение модели

88 Величина «Значимость F» показывает

1вероятность недостоверности коэффициента детерминации

89 Для чего служит величина «Значимость F»?

2для определения достоверности коэффициента детерминации

90 Нулевая гипотеза для коэфициента детерминации отвергается при

Значимости F, меньшей или равной 5%

91 Что означает незначимость коэффициента детерминации?

что рассчитанный коэффициент детерминации не достоверен

92 В каком случае коэффициент детерминации может быть не достоверен?

4в случае, если для анализа взято слишком мало наблюдений

93 Что необходимо сделать в случае незначимости коэффициента детерминации?

увеличить количество наблюдений в исследуемой выборке

94 Причиной недостоверности коэффициента детерминации может служить

недостаточное количество наблюдений

95 В каком случае коэффициент детерминации считается незначимым?

если величина «Значимость F» больше 0,05

96 В каком случае коэффициент детерминации признается не достоверным?

если Значимость F больше или равна 5%

97 Что показывает коэффициент детерминации?

объясненную регрессией долю дисперсии зависимой переменной у

98 Как рассчитывается коэффициент детерминации?

как доля объясненной регрессией дисперсии в общей дисперсии зависимой переменной

99 О чем свидетельствует близкое кзначение коэффициента детерминации?

о наличии тесной связи между изучаемыми показателями

100 Величина RSS показывает

3величину дисперсии зависимой переменной, объясненной регрессией

101. Величина ТSS показывает

общий разброс зависимой переменной вокруг ее среднего значения

102 Величина ЕSS показывает

4величину дисперсии зависимой переменной, не объясненной регрессией

103 Как рассчитывается коэффициент детерминации?

104 Что такое остаток?

3разность между реальным и расчетным значением у

105 Какое количество остатков выводится при проведении регрессии?

2равное количеству наблюдений

106 Какое количество стандартных остатков выводится при проведении регрессии?

3равное количеству наблюдений

107 Что такое статистический выброс?

наблюдение, которое резко отклоняется от линии регрессии

108 Что такое статистический выброс?

нетипичное наблюдение, подлежащее удалению

109. Какое наблюдение считается статистическим выбросом?

наблюдение, не вошедшее в выборку, по которой производится регрессионный анализ

110 Каким образом при решении регрессионной задачи в пакете Excel обнаруживаются статистические выбросы?

2по величинам стандартных остатков наблюдений

111 В каких случаях не обязательно удаление статистических выбросов?

2в случае сильной связи в регрессионной модели

112 В каких случаях необходимо удаление статистических выбросов?

в случае низкого значения коэффициента корреляции

113 Каковы последствия удаления статистических выбросов в регрессионном анализе?

увеличение тесноты связи в модели

114. Для проверки качества построенной регрессионной модели необходимо проанализировать:

коэффициент корреляции, Значимость F, Р-значения

115 Для чего в регрессионную модель вводятся бинарные переменные?

для учета качественных признаков

115. Для признания регрессионной модели качественной должны выполняться условия:

связь тесная, наблюдений достаточно, все объясняющие переменные значимы

116 Что такое бинарная переменная?

переменная, принимающая значения «0» или «1» при наличии или отсутствии признака

116. Зачем в регрессионном анализе используются бинарные переменные?

чтобы учесть в модели факторы, выражающиеся не количественными значениями

117 Фиктивная переменная — это

другое название бинарной переменной

118 Бинарная переменная является

равноправной переменной регрессионной модели

119 Уравнение регрессии, содержащее бинарные переменные, является

120 Какие значения может принимать фиктивная переменная?

121 Можно ли использовать бинарные переменные в множественной регрессии?

122 Можно ли использовать бинарные переменные в парной регрессии?

123 Можно ли вводить в модель больше одной бинарной переменной?

123. Можно ли вводить в модель больше одной бинарной переменной?

да, только при условии высокого коэффициента корреляции

124 Может ли бинарная переменная быть независимой переменной регрессионной модели?

125 Может ли коэффициент при бинарной переменной быть отрицательным?

126 Что означает отрицательный коэффициент при бинарной переменной?

уменьшение зависимой переменной при наличии признака, описываемого бинарной

127 Что означает положительный коэффициент при бинарной переменной?

увеличение зависимой переменной при наличии признака, описываемого бинарной

128 Незначимость коэффициента при бинарной переменной означает

4отсутствие влияния данного качественного признака на зависимую переменную

129 Статистическая значимость бинарной переменной означает

подтвержденное влияние данного качественного признака на зависимую переменную

130 В каких случаях производится исключение бинарных переменных из модели?


источники:

http://habr.com/ru/post/350668/

http://ru.essays.club/%D0%AD%D0%BA%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D0%B4%D0%B8%D1%81%D1%86%D0%B8%D0%BF%D0%BB%D0%B8%D0%BD%D1%8B/%D0%AD%D0%BA%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D0%BA%D0%B0/%D0%A2%D0%B5%D1%81%D1%82-%D0%BF%D0%BE-%D0%AD%D0%BA%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B5-14909.html