Уравнение розы в декартовых координатах

Исследовательская работа «Розы Гвидо Гранди»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

САМАРСКИЙ КОЛЛЕДЖ СТРОИТЕЛЬСТВА И ПРЕДПРИНИМАТЕЛЬСТВА (ФИЛИАЛ) ФГБОУ ВО «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

РОЗЫ ГВИДО ГРАНДИ

Окунев Игорь, студент Самарского колледжа строительства и предпринимательства ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет». Научный руководитель – Егорова Н. С., преподаватель естественно-научных дисциплин.

1. Введение. Цель и задачи работы

2. Основная часть

2.1 Историческая справка

2.2 Разнообразие роз Гвидо Гранди

2.3 Полярная система координат

2.4 Общие свойства роз Гвидо Гранди

2.5 Связь с другими замечательными кривыми

«Узоры математики, как и узоры художника или узоры поэта, должны быть красивы, идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики» (Дж.Х. Харди).

Математика-это наука, которая изучает величины, количественные отношения и пространственные формы, описывает процессы, происходящие в окружающем нас мире. Законы математики и решения математических задач приложены ко всем областям человеческой деятельности. Линии занимают особое положение в математике. Используя линии, можно создать наглядные модели многих процессов и проследить их течение во времени. Линии позволяют установить и исследовать функциональную зависимость между различными величинами. С помощью линий удается решать многие научные, инженерные задачи в различных отраслях жизни. Меня заинтересовали кривые, заданные в полярных координатах. Среди них можно назвать спираль Архимеда, логарифмическую спираль, кардиоиду, лемнискату, астроиду, розы Гвидо Гранди. Больше других мое внимание привлекла математическая кривая, похожая на цветок — полярная роза или роза Гвидо Гранди, и я в своей работе хочу исследовать многообразие форм «роз» Гвидо Гранди.

Исследовать, как изменяются кривые Гвидо Гранди, заданные в полярной системе координат в зависимости от различных значений параметров

1. Установить связь между количеством лепестков, их формул и симметричности получившегося рисунка.

2. Получить большое разнообразие форм «роз» Гвидо Гранди.

3. Изучить использование полярных координат в жизни, искусстве, науке, технике и применить на практике.

2.1 Историческая справка

В 18 веке итальянский геометр Гвидо Гранди (1671-1742) создал кривые линии с точными плавными очертаниями. Они были похожи на цветок. Семейство этих кривых было названо семейством роз Гвидо Гранди. Их точные черты не причуды природы, они предопределены особо подобранными математическими зависимостями. Эти зависимости были подсказаны самой природой, ведь в большинстве случаев абрис листа или цветка представляет собой кривую, симметричную относительно оси. Свои очаровательные цветы Гвидо Гранди собрал в одну книгу и назвал ее «Цветник роз» . Гранди извест ен своей работ ой «Flores geometrici» (1728). Данная работа позволяет изучать крив ые , котор ые име ю т форму лепестков цветка. Он назвал розы кривой rhodonea и назвал крив ую Clelia в честь графин и Клели и Борромео .

Уравнение розы Гвидо Гранди в полярных координатах имеет вид

Задавая параметр отношением натуральных чисел можно получить замкнутые кривые, при определенных условиях превращающиеся в лепестковые цветы или в ажурные розетки, которые могут служить элементами декора или орнамента.

2.2. Разнообразие роз Гвидо Гранди

Рассмотрим уравнение кривой

Возьмём для начала любое a и k -чётное число, тогда получим «розу» с количеством лепестков 2 k , и длина от начала координат до вершины лепестков будет равна радиусу описанной окружности a . Кривые симметричны относительно оси ординат, оси абсцисс и начала координат.

Если мы возьмём любое a и k -нечётное число, то получим цветок из k лепестков. Мы замечаем, что в одном случаи есть лепесток, направленный по оси ординат вверх, а в другом вниз. Это зависит от значения k . Вниз лепесток будет направлен при k =3 и при всех последующих нечётных через одно число, вверх – при k =5 и при всех следующих нечетных числах через одно. Кривые симметричны относительно оси ординат.

Рассмотрим уравнение кривой

Мы замечаем, что количество лепестков стало зависеть от c и b .Если c=1, а b =2 получаем кривую, напоминающую 2 кардиоиды, «наползшие» друг на друга. Если b=3, то мы получим кардиоиду с петлей «внутри себя». Если b>3 мы получим закольцованную спираль, в центре которой будет кардиоида (1 или 2). Если c > b , c -любое нечётное число, b -любое нечётное число и получившаяся дробь не сокращается до целого числа, тогда мы получаем «розу» из c -лепестков, у которого они находят друг на друга. При c =5 и всех последующих нечётных чисел через одни, один лепесток «розы» будет направлении вниз по оси ординат. По аналогии при c =7 и при всех последующих нечётных числах один лепесток направлен вверх по оси ординат. Кривая симметрична относительно оси ординат.

Если c > b , c -любое чётное число, b -любое нёчетное и получившаяся дробь не сокращается до целого числа, то мы имеем «розу» из лепестков количеством 2 c . Они ложатся друг на друга. Кривые симметричны относительно начала координат, оси ординат и абсцисс.

Если мы зададим значения c > b , c -любое нечётное число, b -любое чётное и получившаяся дробь не сокращается до целого числа, тогда увидим цветы с количеством лепестков 2 c . Они будут накладываться друг на друга. Кривые симметричны относительно начала координат, оси ординат и абсцисс.

Рассмотрим уравнение кривой

Если k -чётное число, и мы будем прибавлять | m |>5 , то наша «роза» из 2k лепестков будет переходить в кривую, стремящуюся к форме окружности. Чем больше m и чем меньше a , тем более округленный цветок мы получим

Если k -нечётное число, и если будем прибавлять числа | m |>5 , то наша кривая в форме цветка будет переходить в окружность. Чем больше m и чем меньше a , тем более округленный цветок мы получим.

2.3. Полярная система координат.

Положение любой точки P в пространстве (в частности, на плоскости) может быть определено при помощи той или иной системы координат. Числа (или другие символы), определяющие положение точки, называются координатами этой точки. В зависимости от целей и характера исследований выбирают различные системы координат. Рассмотрим полярную систему координат.

Полярная система координат — двухмерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой, декартовой или прямоугольной системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.
Полярная система координат задаётся лучом, который называют нулевым или полярной осью. Точка, из которой выходит этот луч, называется началом координат или полюсом. Итак: положительным направлением отсчета углов считается направление «против часовой стрелки»

Основными понятиями этой системы являются точка отсчёта – полюс, и луч, начинающийся в этой точке – полярная ось.

Полярный радиус ρ – длина отрезка О P

Полярный угол φ – величина угла между полярной осью и отрезком О P .

Переход от полярной системы координат к декартовой

Если полюс полярной системы координат совместить с началом прямоугольной системы координат, а полярную ось с положительной полуосью Ox, то по известным полярным координатам точки А (ρ;φ) её прямоугольные координаты вычисляются по формулам:

2.5 Общие свойства роз Гвидо Гранди

Семейство роз Гранди имеет свойство, которое в природе не сразу и заметишь: так как

,

то вся кривая расположена внутри круга единичного радиуса. В силу периодичности тригонометрических функций роза состоит из одинаковых лепестков, симметричных относительно наибольших радиусов, каждый из которых равен 1.

Наиболее красивые «цветы» получаются при k = 2 (четырехлепестковая роза) и при k = 3 (трехлепестковая роза).

Покажем, как построить трёхлепестковую розу. Для построения этой кривой сначала заметим, что поскольку полярный радиус неотрицателен, то должно выполняться неравенство , решая которое находим область допустимых углов: ,

В силу периодичности функции (ее период равен ) достаточно построить график для углов в промежутке , а в остальных двух промежутках использовать периодичность. Итак, пусть . Если угол изменяется от 0 до 1, изменяется от 0 до 1, и, следовательно, изменяется от 0 до 1. Если угол изменяется от , то радиус изменяется от 1 до 0. Таким образом, при изменении угла от 0 до , точка на плоскости описывает кривую, похожую на очертания лепестка и возвращается в начало координат. Такие же лепестки получаются, когда угол изменяется в пределах от до π и от до .

Рассмотрим теперь, как построить кривую, заданную в полярной системе координат уравнением ρ= sin(2 ∗ 𝜑) .

Функция — периодическая с периодом π, кроме того,

,

поэтому достаточно построить кривую в первой четверти, потом зеркально отразить ее относительно оси Оу и использовать периодичность для построения кривой в третьей и четвертой четвертях.

Функция на отрезке [0; монотонно возрастает с 0 до 1 , а на отрезке [ ] монотонно убывает от 1 до 0. Таким образом, мы получили лепесток розы, лежащий в первой четверти. Остальные три лепестка получатся, если построить кривую в оставшихся четвертях.

Отметим следующие интересные свойства четырехлепестковой розы:

• четырехлепестковая роза есть геометрическое место оснований перпендикуляров, опущенных из начала координат на отрезок длиной 1, концы которого скользят по координатным осям;

• площадь, ограничиваемая четырехлепестковой розой, равна .

Вообще, если k — натуральное число, то роза состоит из 2k лепестков при четном k и из k лепестков при k нечетном.

2.6.Связь с другими кривыми

Замечательные кривые

Кардиоида (от греческих слов сердце и вид) – получила свое название из-за схожести своих очертаний со стилизованным изображением сердца.

Определяется уравнением в полярных координатах

.

(a — радиус окружности)

В Древней Греции «лемнискатой» называли бантик, с помощью которого прикрепляли венок к голове победителя в спортивных играх. Эту лемнискату называют в честь швейцарского математика Якоба Бернулли, положившего начало ее изучению.

Определяется уравнением в полярных координатах:

(с – половина расстояния между фокусами лемнискаты)

Полярная роза – известная математическая кривая, похожая на цветок. Определяется уравнением в полярных координатах

Спираль Архимеда – названа в честь ее изобретателя, древнегреческого математика Архимеда. Определяется уравнением в полярных координатах

Применение полярных координат

В фотографии

Вертикальные линии после того, как к ним применен фильтр (переводящий координаты точек из прямоугольной системы в полярную), стали расходиться из центральной точки.

В экономике

Необычный формат биржевых графиков предложил в 1990-е годы российский математик Владимир Иванович Елисеев

Ф – время её совершения

Используя такую систему координат, относительно просто связать градусы и время (в году 365 дней, в окружности – 360 градусов)

В военном деле

Координаты цели могут выдаваться в полярной системе координат (азимут, дальность), прямоугольной (X, Y), геодезической (широта, долгота).

В медицине

Компьютерная томография сердца в системе полярных координат .

В системах идентификации человека

Результат преобразования кольца радужной оболочки из декартовой системы координат в полярную.

В различных областях науки и техники

Измерительный проектор предназначен для измерения различных параметров в прямоугольной и полярной системах координат

Применяется в измерительных лабораториях и цехах предприятий точного приборостроения, машиностроения, микроэлектроники, в инструментальном производстве, а также в лабораториях НИИ.

В математическом дизайне и архитектуре малых форм

С помощью выращенных цветов, различных кривых в полярных координатах и графических редакторов можно сделать, например различные рисунки, рамки-орнаменты, или украсить ими различные предметы. Орнамент — украшение, узор, состоящий из ритмически организованных повторяющихся элементов, которые композиционно могут образовывать орнаментальный ряд.

В ландшафтном дизайне

2.7 Практическая часть

Так как я обучаюсь в Самарском колледже строительства и предпринимательства, то данная тема мне близка и актуальна. На отделении садово-парковое и ландшафтное строительство студенты создают эскизы и макеты цветников, клумб и альпийских горок.
На отделении строительство зданий и сооружений, на уроках архитектуры изучают и создают современные орнаменты.

Мной созданы несколько эскизов орнамента. Изучение линий Гвидо Гранди натолкнуло меня выполнить эскизы орнамента в виде кардиоид и роз. Несколько моих разработок я здесь представлю.

Уравнения кривых. Роза.

Роза — плоская кривая, ее чертеж схож с рисунком цветка. Эта кривая в полярной системе координат характеризуется выражением:

где a и k — константы, обуславливающие размер (a) и численность лепестков (k) выбранной розы.

Вся линия размещена внутри окружности с радиусом а и при k > 1состоит из идентичных по форме и размеру лепестков. Численность лепестков характеризуется величиной k.

При целом k численность лепестков будет k, когда k нечётное и 2 k,- когда чётное.

При дробном k вида k = m /n, где m и n взаимно простые, количество лепестков розы будет m, когда оба числа нечётные и 2m, если хотя бы одно — чётно.

При k иррациональном лепестков бесчисленное множество.

Трехлепестковая роза.

Уравнение имеет вид:

Данное уравнение сходно с линией, образованной вращением против часовой стрелки по кривой 30 o либо π/6 радиан.

В общем, r = acosnθ или r = asinnθ формирует k лепестков когда k нечетное.

Четырехлепестковая роза.

Данное уравнение сходной с линией, образованной вращением против часовой стрелки по кривой 45 o или π/4 радиан.

В общем r = acosnθ или r = asinnθ формирует 2k лепестков если k — четное.

Историческая справка о розах Гвидо Гранди

Содержание

Основная часть. 4

Историческая справка о розах Гвидо Гранди. 4

Полярная система координат. 6

Связь между полярной и декартовой системами координат. 6

Переход от полярной системы координат к декартовой. 7

Розы Гвидо Гранди. 7

Понятие кривой. 7

Связь с другими кривыми. 9

Исследование кривой в зависимости от изменения параметров. 10

Разнообразие роз Гвидо Гранди. 11

Список использованной литературы.. 17

Введение

Математика-это наука, которая изучает величины, количественные отношения и пространственные формы, описывает процессы, происходящие в окружающем нас мире. Законы математики и решения математических задач приложены ко всем областям человеческой деятельности. Линии занимают особое положение в математике. Используя линии, можно создать наглядные модели многих процессов и проследить их течение во времени. Линии позволяют установить и исследовать функциональную зависимость между различными величинами. С помощью линий удается решать многие научные, инженерные задачи в различных отраслях жизни. Нас заинтересовали кривые, заданные в полярных координатах. Среди них можно назвать спираль Архимеда, кардиоиду, астроиду, розы Гвидо Гранди. Больше других наше внимание привлекла математическая кривая, похожая на цветок- полярная роза или роза Гвидо Гранди, и мы в своей работе хотим исследовать многообразие форм «роз» Гвидо Гранди.

Данная работа является актуальной, так как позволяет расширить знания о свойствах таких замечательных кривых, как розы.

Объектом исследования является кривая роза Гвидо Гранди.

Предмет исследования – зависимости кривых Гвидо Гранди от различных значений параметров.

Цель работы: исследовать, как изменяются кривые Гвидо Гранди, заданные в полярной системе координат в зависимости от различных значений параметров.

1. Исследовать связь между количеством липестков, их формул и симметричности получившегося рисунка;

2. Показать с помощью компьютерной среды Microsoft Excel, как изменяются кривые в зависимости от различных значений параметров;

3. Получить большое разнообразие форм «роз» Гвидо Гранди;

4. Провести анализ полученных данных и сделать выводы.

Основная часть

Историческая справка о розах Гвидо Гранди

В 18 веке итальянский геометр Гвидо Гранди (1671-1742) создал кривые линии с правильными плавными очертаниями. Они были похожи на цветок. Семейство этих кривых было названо семейством роз Гвидо Гранди. Их правильное очертание-это не каприз природы- они предопределены математическими зависимостями. Эти зависимости были подсказаны самой природой, ведь в большинстве случаев абрис листа или цветка представляет собой кривую, симметричную относительно оси. Свои прекрасные цветы Гвидо Гранди собрал в одну книгу и назвал ее «Цветник роз». Гранди известен своей работой Flores geometrici (1728), изучавшей розы — кривые, которые имеют форму лепестков цветка. Он назвал розы кривой rhodonea и назвал кривую Clelia в честь графини Клелии Борромео.

Уравнение розы Гвидо Гранди в полярных координатах имеет вид: .

Задавая параметр отношением натуральных чисел можно получить замкнутые кривые, при определенных условиях превращающиеся в лепестковые цветы или в ажурные розетки, которые могут служить элементами декора или орнамента.

Очарованный результатами Гранди, немецкий геометр, математик-натуралист XIX в. Б. Хабенихт также решил заняться математическим «растениеводством». И он путем многочисленных экспериментов «вырастил» замечательные экспонаты. Полагая, что абрис (очертание) листа или цветочного лепестка в полярных координатах описывается выражением где для каждого отдельного растения представляет определённую комбинацию тригонометрических функций, Хабенихт в своих работах приводит ряд полученных им уравнений, которые с хорошим приближением аналитически выражают очертания различных листьев и плодов. Он также рассматривает контур листа как замкнутую кривую, которая в полярной системе координат имеет уравнение.

Если предположить, что кривая, изображающая контур листа, симметрична относительно полярной оси, а функция является конечной суммой, то эта сумма должна состоять из косинусов или синусов. Исходя из этого общего уравнения, Хабенихт исследует его частные случаи. Постепенно усложняя уравнение он получает большое количество уравнений контуров листьев: плюща, крапивы, листьев кислицы и др.


источники:

http://www.calc.ru/Uravneniya-Krivykh-Roza.html

http://poisk-ru.ru/s60209t21.html